DOI QR코드

DOI QR Code

Dry reforming of Propane to Syngas over Ni-CeO2/γ-Al2O3 Catalysts in a Packed-bed Plasma Reactor

충전층 플라즈마 반응기에서 Ni-CeO2/γ-Al2O3 촉매를 이용한 프로페인-합성 가스 건식 개질

  • Sultana, Lamia (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Rahman, Md. Shahinur (School of Physical, Environmental and Mathematical Sciences, the University of New South Wales (UNSW Sydney)) ;
  • Sudhakaran, M.S.P. (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Hossain, Md. Mokter (Department of Chemical and Biological Engineering, Jeju National University) ;
  • Mok, Young Sun (Department of Chemical and Biological Engineering, Jeju National University)
  • Received : 2018.08.04
  • Accepted : 2018.11.13
  • Published : 2019.03.30

Abstract

A dielectric barrier discharge (DBD) plasma reactor packed with $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was used for the dry ($CO_2$) reforming of propane (DRP) to improve the production of syngas (a mixture of $H_2$ and CO) and the catalyst stability. The plasma-catalytic DRP was carried out with either thermally or plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst at a $C_3H_8/CO_2$ ratio of 1/3 and a total feed gas flow rate of $300mL\;min^{-1}$. The catalytic activities associated with the DRP were evaluated in the range of $500{\sim}600^{\circ}C$. Following the calcination in ambient air, the ${\gamma}-Al_2O_3$ impregnated with the precursor solution ($Ni(NO_3)_2$ and $Ce(NO_3)_2$) was subjected to reduction in an $H_2/Ar$ atmosphere to prepare $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst. The characteristics of the catalysts were examined using X-ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectrometry (EDS), temperature programmed reduction ($H_2-TPR$), temperature programmed desorption ($H_2-TPD$, $CO_2-TPD$), temperature programmed oxidation (TPO), and Raman spectroscopy. The investigation revealed that the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst exhibited superior catalytic activity for the production of syngas, compared to the thermally reduced catalyst. Besides, the plasma-reduced $Ni-CeO_2/{\gamma}-Al_2O_3$ catalyst was found to show long-term catalytic stability with respect to coke resistance that is main concern regarding the DRP process.

프로페인($C_3H_8$)의 건식 개질($CO_2$ 개질)을 통한 합성 가스($H_2$와 CO 혼합물) 제조를 위해 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매가 충진된 유전체 장벽 방전 플라즈마 반응기를 사용하였다. 열 또는 플라즈마에 의해 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매를 사용하여 $C_3H_8/CO_2$ 비율 1/3, 총 유량 $300mL\;min^{-1}$에서 플라즈마-촉매 건식 개질을 수행하였다. 건식 개질에 대한 촉매 활성은 온도범위 $500{\sim}600^{\circ}C$에서 평가되었다. $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매 제조를 위해 전구물질 수용액(질산니켈, 질산세륨)으로 함침된 ${\gamma}-Al_2O_3$를 공기 분위기에서 소성시킨 후, $H_2/Ar$ 분위기에서 환원시켰다. 촉매 특성 조사에는 X-선 회절분석기(XRD), 투과전자현미경(TEM), 전계 방출 주사전자현미경(FE-SEM), 승온 탈착($H_2-TPD$, $CO_2-TPD$) 및 라만 분광기가 이용되었다. 열로 환원된 촉매와 비교하면 플라즈마 방전하에서 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$ 촉매가 개질 반응을 통한 합성 가스 생산에서 보다 우수한 촉매 활성을 나타내었다. 또한, 플라즈마로 환원된 $Ni-CeO_2/{\gamma}-Al_2O_3$가 개질 반응의 문제점인 탄소퇴적 관점에서 장기 촉매 안정성을 보여주었다.

Keywords

CJGSB2_2019_v25n1_81_f0001.png 이미지

Figure 1. Schematic of the plasma-assisted catalytic dry reforming reactor.

CJGSB2_2019_v25n1_81_f0002.png 이미지

Figure 2. TEM images of the thermally reduced (a and b) and plasma-reduced (c and d) catalysts at different magnifications.

CJGSB2_2019_v25n1_81_f0003.png 이미지

Figure 3. SEM images of (a) the thermally reduced and (b) plasma-reduced catalysts.

CJGSB2_2019_v25n1_81_f0004.png 이미지

Figure 5. XRD patterns of (a) bare γ-Al2O3, (b) calcined catalyst, (c) thermally reduced Ni-CeO2/γ-Al2O3, and (d) plasma-reduced Ni-CeO2/γ-Al2O3.

CJGSB2_2019_v25n1_81_f0005.png 이미지

Figure 6. H2-TPD curves of the Ni-CeO2/γ-Al2O3 catalysts.

CJGSB2_2019_v25n1_81_f0006.png 이미지

Figure 7. CO2-TPD curves of the Ni-CeO2/γ-Al2O3 catalysts.

CJGSB2_2019_v25n1_81_f0007.png 이미지

Figure 8. Conversions at different temperatures: (a) C3H8 and (b) CO2.

CJGSB2_2019_v25n1_81_f0008.png 이미지

Figure 9. Concentrations of (a) H2 and (b) CO obtained at different temperatures.

CJGSB2_2019_v25n1_81_f0009.png 이미지

Figure 10. SEM images of the catalysts after dry reforming reaction: (a) TRC, (b) TRC+Plasma, (c) PRC, and (d) PRC+Plasma.

CJGSB2_2019_v25n1_81_f0010.png 이미지

Figure 11. Raman spectra of the Ni-CeO2/γ-Al2O3 catalysts after dry reforming reaction: (a) TRC, (b) TRC+Plasma, (c) PRC, and (d) PRC+Plasma.

CJGSB2_2019_v25n1_81_f0011.png 이미지

Figure 4. (a) Elemental mapping image and (a*) EDS spectra of the thermally reduced catalyst, and (b) elemental mapping image and (b*) EDS spectra of the plasma-reduced catalyst catalyst.

Table 1. Number of desorbed H2 molecules determined by H2-TPD

CJGSB2_2019_v25n1_81_t0001.png 이미지

Table 2. Number of desorbed CO2 molecules determined by CO2-TPD

CJGSB2_2019_v25n1_81_t0002.png 이미지

Table 3. Experimental conditions for the dry reforming reaction

CJGSB2_2019_v25n1_81_t0003.png 이미지

Table 4. Amount of carbon deposition in wt%

CJGSB2_2019_v25n1_81_t0004.png 이미지

References

  1. Veerasubramani, G. K., Sudhakaran, M. S. P., Alluri, N. R., Krishnamoorthy, K., Mok, Y. S., and Kim, S. J., "Effective Use of an Idle Carbon-deposited Catalyst for Energy Storage Applications," J. Mater. Chem. A, 4, 12571-12582 (2016). https://doi.org/10.1039/C6TA05082D
  2. Luk, H. T., Mondelli, C., Ferre, D. C., Stewart, J. A., and Perez-Ramirez, J., "Status and Prospects in Higher Alcohols Synthesis from Syngas," Chem. Soc. Rev., 46, 1358-1426 (2017). https://doi.org/10.1039/C6CS00324A
  3. Cheng, K., Gu, B., Liu, X., Kang, J., Zhang, Q., and Wang, Y., "Direct and Highly Selective Conversion of Synthesis gas into Lower Olefins: Design of a Bifunctional Catalyst Combining Methanol Synthesis and Carbon-carbon Coupling," Angew. Chem. Int. Ed., 55, 4725-4728 (2016). https://doi.org/10.1002/anie.201601208
  4. Sudhakaran, M. S. P., Sultana, L., Hossain, M., Pawlat, J., Diatczyk, J., Bruser, V., Reuter, S., and Mok, Y. S., "Iron-ceria Spinel ($FeCe_2O_4$) Catalyst for Dry Reforming of Propane to Inhibit Carbon Formation," J. Ind. Eng. Chem., 61, 142-151 (2018). https://doi.org/10.1016/j.jiec.2017.12.011
  5. Shiyi, C., "Energy Consumption, $CO_2$ Emission and Sustainable Development in Chinese Industry," Economic Res. J., 4, 41-55 (2009).
  6. Siahvashi A., and Adesina, A. A., "Synthesis Gas Production via Propane Dry ($CO_2$) Reforming: Influence of Potassium Promotion on Bimetallic Mo-$Ni/Al_2O_3$," Catal. Today, 214, 30-41 (2013). https://doi.org/10.1016/j.cattod.2012.12.005
  7. Althenayan, F. M., Foo, S. Y., Kennedy, E. M., Dlugogorski, B. Z., and Adesina, A. A., "Bimetallic Co-$Ni/Al_2O_3$ Catalyst for Propane Dry Reforming: Estimation of Reaction Metrics from Longevity Runs," Chem. Eng. Sci., 65, 66-73 (2010). https://doi.org/10.1016/j.ces.2009.03.037
  8. Pornmai, K., Jindanin, A., Sekiguchi, H., and Chavadej, S., "Synthesis Gas Production from $CO_2$-Containing Natural Gas by Combined Steam Reforming and Partial Oxidation in an AC Gliding Arc Discharge," Plasma Chem. Plasma Proc., 32, 723-742 (2012). https://doi.org/10.1007/s11090-012-9371-2
  9. Raberg, L. B., Jensen, M. B., Olsbye, U., Daniel, C., Haag, S., Mirodatos, C., and Olafsen Sjastad, A., "Propane Dry Reforming to Synthesis Gas over Ni-based Catalysts: Influence of Support and Operating Parameters on Catalyst Activity and Stability," J. Catal., 249, 250-260 (2007). https://doi.org/10.1016/j.jcat.2007.04.004
  10. Ghorbani, A., Jafari, M., and Rahimpour, M. R., "A Comparative Simulation of a Novel Gas to Liquid (GTL) Convertsion Loop as an Alternative to a Certain Refinery Gas Flare," J. Natural Gas Sci. Eng., 11, 23-38 (2013). https://doi.org/10.1016/j.jngse.2012.11.002
  11. Karuppiah J., and Mok, Y. S., "Plasma-reduced $Ni/{\gamma}-Al_2O_3$ and $CeO_2-Ni/{\gamma}-Al_2O_3$ Catalysts for Improving Dry Reforming of Propane," Int. J. Hydrogen Ener., 39, 16329-16338 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.012
  12. Kim, K. M., Kwak, B. S., Park, N. K., Lee, T. J., Lee, S. T., and Kang, M., "Effective Hydrogen Production from Propane Steam Reforming over Bimetallic Co-doped $Ni-Fe/Al_2O_3$ Catalyst," J. Ind. Eng. Chem., 46, 324-336 (2017). https://doi.org/10.1016/j.jiec.2016.10.046
  13. Natesakhawat, S., Oktar, O., and Ozkan, U. S., "Effect of Lanthanide Promotion on Catalytic Performance of Sol-gel $Ni/Al_2O_3$ Catalysts in Steam Reforming of Propane," J. Mol. Catal. A Chem., 241, 133-146 (2005). https://doi.org/10.1016/j.molcata.2005.07.017
  14. Tu, X., Gallon, H. J., Twigg, M. V., Gorry, P. A., and Whitehead, J. C., "Dry Reforming of Methane over a $Ni/Al_2O_3$ Catalyst in a Coaxial Dielectric Barrier Discharge Reactor," J. Phys. D Appl. Phys., 44, 274007 (2011). https://doi.org/10.1088/0022-3727/44/27/274007
  15. Ray, D., Reddy, P. M. K., and Subrahmanyam, C., "$Ni-Mn/{\gamma}-Al_2O_3$ Assisted Plasma Dry Reforming of Methane," Catal. Today, 309, 212-218 (2018). https://doi.org/10.1016/j.cattod.2017.07.003
  16. Gallon, H. J., "Dry Reforming of Methane Using Non-thermal Plasma-catalysis," PhD Dissertation, The University of Manchester, Manchester, UK (2010).
  17. Mahammadunnisa, S., Manoj Kumar Reddy, P., Ramaraju, B., and Subrahmanyam, C., "Catalytic Nonthermal Plasma Reactor for Dry Reforming of Methane," Ener. Fuels, 27, 4441-4447 (2013). https://doi.org/10.1021/ef302193e
  18. Karuppiah, J., Linga Reddy, E., Sudhakaran, M. S. P., and Lee, S. B., "Production of Synthesis Gas from Dry Reforming of Propane with Carbon Dioxide over Ceria-promoted Nickel Foam Catalysts," Renewable Ener. Power Qual. J., 1, 742-747 (2016).
  19. Shah, Y. T., and Gardner, T. H., "Dry Reforming of Hydrocarbon Feedstocks," Catal. Rev., 56, 476-536 (2014). https://doi.org/10.1080/01614940.2014.946848
  20. Chueh, W. C., Shao, Z., and Haile, S. M., "Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts," Topics Catal., 46, 402-413 (2007). https://doi.org/10.1007/s11244-007-9012-9
  21. Luisetto, I., Tuti, S., and Di Bartolomeo, E., "Co and Ni Supported on $CeO_2$ as Selective Bimetallic Catalyst for Dry Reforming of Methane," Int. J. Hydrogen Ener., 37, 15992-15999 (2012). https://doi.org/10.1016/j.ijhydene.2012.08.006
  22. Li, G., Hu, L., and Hill, J. M., "Comparison of Reducibility and Stability of Alumina-supported Ni Catalysts Prepared by Impregnation and Co-precipitation," Appl. Catal. A General., 301, 16-24 (2006). https://doi.org/10.1016/j.apcata.2005.11.013
  23. Sutthiumporn, K., and Kawi, S., "Promotional Effect of Alkaline Earth over $Ni-La_2O_3$ Catalyst for $CO_2$ Reforming of $CH_4$: Role of Surface Oxygen Species on $H_2$ Production and Carbon Suppression," Int. J. Hydrogen Ener., 36, 14435-14446 (2011). https://doi.org/10.1016/j.ijhydene.2011.08.022
  24. Dharanipragada, N. V. R. A., Meledina, M., Galvita, V., Poelman, H., Turner, S., Tendeloo, G. V., Detavernier, C., and Marin, G. B., "Deactivation Study of $Fe_2O_3-CeO_2$ during Redox Cycles for CO Production from $CO_2$," Ind. Eng. Chem. Res., 55, 5911-5922 (2016). https://doi.org/10.1021/acs.iecr.6b00963
  25. Liu, C. J., Zou, J., Yu, K., Cheng, D., Han, Y., and Zhan, J., "Plasma Application for More Environmentally Friendly Catalyst Preparation," Pure Appl. Chem., 78, 1227-1238 (2006). https://doi.org/10.1351/pac200678061227
  26. Shang, S., Liu, G., Chai, X., Tao, X., Li, X., Bai, M., Chu, W., Dai, X., Zhao, Y., and Yin, Y., "Research on $Ni/{\gamma}-Al_2O_3$ Catalyst for $CO_2$ Reforming of $CH_4$ Prepared by Atmospheric Pressure Glow Discharge Plasma Jet," Catal. Today, 148, 268-274 (2009). https://doi.org/10.1016/j.cattod.2009.09.011
  27. Li, C. L., Fu, Y. L., and Bian, G. Z., "Surface Basicity and Catalytic Performance on Ni/Ce-Zr-Al-O Catalyst for $CO_2+CH_4$ Reforming," Acta Physico-Chimica Sinca, 19, 902-906 (2003). https://doi.org/10.3866/PKU.WHXB20031004
  28. Rahemi, N., Haghighi, M., Babaluo, A., and Fallah Jafari, M., "Syngas Production via $CO_2$ Reforming of Methane over Plasma Assisted Synthesized $Ni-Co/Al_2O_3-ZrO_2$ Nanocatalysts with Different Ni-Loadings," Int. J. Ener. Res., 38, 765-779 (2014). https://doi.org/10.1002/er.3084