DOI QR코드

DOI QR Code

A Study on the Effect of the Orifice Shape on Oil Outflow from a Damaged Ship

사고 선박 손상부 형상이 기름 유출량에 미치는 영향 연구

  • Park, Il-Ryong (Department. of Naval Architecture & Ocean Engineering, Dong-Eui University)
  • 박일룡 (동의대학교 조선해양공학과)
  • Received : 2022.04.12
  • Accepted : 2022.06.27
  • Published : 2022.06.30

Abstract

This paper shows the numerical prediction of the change in oil outflow rate according to the orifice shape of a damaged ship by using the computational fluid dynamics (CFD) analysis method. It also provides discharge coefficients for various orifice shapes to be used in theoretical prediction approaches. The oil outflow from the model ship was analyzed using a multiphase flow method under the condition that the Froude and Reynolds number similitudes were satisfied. The present numerical results were verified by comparing them with the available experimental data. Along with the aspect ratio of the orifice and the wall thickness of the cargo tank, the effects of the orifice shapes defined by mathematical figures on the oil outflow were investigated. To consider more realistic situations, the investigation of the ef ect of the crushed iron plate around the damaged part was also included. The numerical results confirmed the change in oil outflow time for various shapes of the damaged part of the oil tank, and discharge coefficients that quantify the viscous effects of those orifice shapes were extracted. To verify the predicted discharge coefficients, they were applied to an oil spill estimation equation. As a result, a good agreement between the CFD and theoretical results was obtained.

본 논문은 CFD 해석법을 이용하여 사고 선박의 손상부 형상에 따른 기름 유출량 변화를 예측하고, 이론 추정식에서 이를 고려할 수 있는 방출계수 도출 결과를 소개한다. Froude수와 Reynolds수 상사를 만족하는 조건에서 다상유동 해석법을 사용하여 모형선 크기의 기름 유출 문제를 다루었다. 수치해석 결과는 알려진 실험 결과와 비교하여 검증하였다. 수학적 형상들로 정의한 손상부 형상의 변화와 함께 손상부 가로세로비와 기름탱크 두께의 변화가 기름 유출 유동에 미치는 영향을 조사하였다. 보다 현실적인 상황을 고려하기 위해 손상부의 찧어진 철판의 영향에 대한 해석도 포함하였다. 수치해석 결과를 통해 사고 선박의 손상부 형상에 따른 기름 유출량의 변화를 확인하였으며, 다양한 손상부 형상이 가지는 점성 영향을 방출계수로 정량화하여 추출하였다. 본 논문에서 제시하는 방출계수에 대한 검증을 위하여 알려진 기름 유출량 주정식에게 적용하였으며, CFD 해석과 좋은 일치를 얻었다.

Keywords

Acknowledgement

본 논문은 2022년 해양경찰청 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구입니다(해양오염방지 긴급구난 의사결정 지원기술 개발 4/5, PMS5400).

References

  1. Dodge, F. T., E. B. Bowles., J. E. Mann, and R. E. white(1980), Experiment verification and revision of the venting rate model of the Hazardous Assessment Computer System and the vulnerability model. United States Coast Guard, Office of Research and Development, Gronton, Connecticut, Final Report CG-D-63-80, pp. 207.
  2. Kim, C. K., J. H. Oh, and S. G. Kang(2016), A review of Deepwater Horizon Oil Budget Calculator for its Application to Korea, Journal of the Korean Society for Marine Environmental Engineering, Vol. 19, No. 4, pp. 322-331. https://doi.org/10.7846/JKOSMEE.2016.19.4.322
  3. Kim, W. J. and Y. Y. Lee(2001), A Preliminary Study for the Prediction of Leaking-Oil Amount from a Rupture Tank, Journal of the Korean Society for Marine Environmental Engineering, Vol. 4, No. 4, pp. 21-31.
  4. Kim, W. J., Y. Y. Lee, and J. K. Yum(2001), Experimental and Computational study for the Prediction of Leaking-Oil Amount from a Ruptured Tank, The Korean Society for Marine Environment & Energy, pp. 5-14.
  5. Lee, S. J.(2008), A Study on Social Impacts of the Hebei Spirit Oil Spill Accident in Korea, ECO, Vol. 12, No. 1, pp. 109-144.
  6. Lu, J. S., F. C. Liu, and Z. Y. Zhu(2014), Effects of initial water layer thickness on oil leakage from damaged DHTs, The Twenty-fourth International Ocean and Polar Engineering Conference, Busan, Korea. ISOPE-I-14-009.
  7. Lu, J., Z. Yang, H. Wu, W. Wu, F. Xu, H. Yang, and S. Yan(2016), Model experiment on the dynamic process of oil leakage from the double hull tanker, Journal of Loss Prevention in the Process Industries, Vol. 43, pp. 174-180. https://doi.org/10.1016/j.jlp.2016.05.013
  8. Lu, J., Z. Yang, H. Wu, W. Wu, J. Deng, and S. Yan(2018), Effects of tank sloshing on submerged oil leakage from damaged tankers, Proc. of Ocean Engineering, Vol. 168, No. 15, pp. 115-172.
  9. Muzaferija, S. and M. Peric(1999), Computation of free surface flows using interface-tracking and interface-capturing methods. In Mahrenholtz, O. & Markiewicz, M., eds. Nonlinear Water Wave Interaction. pp. 59-100, WIT Press.
  10. Patankar, S. V.(1980), Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation.
  11. Siemens(2019), STAR-CCM+ User Guide. Version 14.04.
  12. Tavakolli, M. T., J. Amdahl, A. Ashrafian, and B. J. Leira (2008), Analytical predictions of oil spillage from grounded cargo tankers, Proc. of Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering, OMAE2008-57913, pp. 911-920.
  13. Tavakolli, M. T., J. Amdahl, and B. J. Leira(2009), Investigation of interaction between oil spills and hydrostatic changes, Proc. of Proceedings of the ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering, OMAE2008-57913, pp. 803-811.
  14. Tavakolli, M. T., J. Amdahl, and B. J. Leira(2011), Experimental investigation of oil leakage from damaged ships due to collision and grounding, Proc. of Ocean Engineering, Vol. 38, pp. 841-865.
  15. Yang, H., S. Yan., Q. Ma, J. Lu, and Y. Zhou(2017), Turbulence modelling and role of compressibility on oil spilling from a damaged double hull tank, Proc. of International Journal for Numerical Methods in Fluids, Vol. 83, No. 11, pp. 841-865. https://doi.org/10.1002/fld.4294