• Title/Summary/Keyword: material topology optimization

Search Result 167, Processing Time 0.023 seconds

A topology optimization method of multiple load cases and constraints based on element independent nodal density

  • Yi, Jijun;Rong, Jianhua;Zeng, Tao;Huang, X.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.759-777
    • /
    • 2013
  • In this paper, a topology optimization method based on the element independent nodal density (EIND) is developed for continuum solids with multiple load cases and multiple constraints. The optimization problem is formulated ad minimizing the volume subject to displacement constraints. Nodal densities of the finite element mesh are used a the design variable. The nodal densities are interpolated into any point in the design domain by the Shepard interpolation scheme and the Heaviside function. Without using additional constraints (such ad the filtering technique), mesh-independent, checkerboard-free, distinct optimal topology can be obtained. Adopting the rational approximation for material properties (RAMP), the topology optimization procedure is implemented using a solid isotropic material with penalization (SIMP) method and a dual programming optimization algorithm. The computational efficiency is greatly improved by multithread parallel computing with OpenMP to run parallel programs for the shared-memory model of parallel computation. Finally, several examples are presented to demonstrate the effectiveness of the developed techniques.

Single and multi-material topology optimization of CFRP composites to retrofit beam-column connection

  • Dang, Hoang V.;Lee, Dongkyu;Lee, Kihak
    • Computers and Concrete
    • /
    • v.19 no.4
    • /
    • pp.405-411
    • /
    • 2017
  • Carbon Fiber Reinforced Plastic (CFRP) has commonly been used to strengthen existing RC structures. Wrapping the whole component with CFRP is an effective method and simple to execute. Besides, specific configuration of CFRP sheets (L, X and T shape) has also been considered in some experiments to examine CFRP effects in advance. This study aimed to provide an optimal CFRP configuration to effectively retrofit the beam-column connection using continuous material topology optimization procedure. In addition, Moved and Regularized Heaviside Functions and penalization factors were also considered. Furthermore, a multi-material procedure was also used to compare with the results from the single material procedure.

Comparative Studies of Topology Optimization Using Continuous Approximation of Material Distribution (재료분포의 연속적인 근사를 이용한 위상최적설계 방법의 비교 연구)

  • Lim, Young-Seok;Yoo, Jeong-Hoon;Terada, Kenjiro;Nishiwaki, Shin-Ji;Min, Seung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.2 s.245
    • /
    • pp.164-170
    • /
    • 2006
  • To prevent the numerical instabilities in topology optimization, continuous approximation of material distribution (CAMD) is proposed to the homogenization design method (HDM) and the simple isotropic material with penalization (SIMP) method. The continuous FE approximation of design variables including high order elements is applied to the formulation of SIMP method. Numerical examples are presented to compare the efficiency of CAMD both in HDM and SIMP.

Design Sensitivity Analysis and Topology Optimization of Heat Conduction Problems (열전도 문제에 대한 설계 민감도 해석과 위상 최적 설계)

  • 김민근;조선호
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.127-134
    • /
    • 2004
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with finite difference ones, requiring less than 0.3% of CPU time far the finite differencing. Also, the topology optimization yields physical meaningful results.

  • PDF

Topology Design Optimization of Three Dimensional Structures for Heat Conduction Problems (열전도 문제에 대한 3 차원 구조물의 위상 최적설계)

  • Moon Se-Joon;Cho Seon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.327-334
    • /
    • 2005
  • In this paper, using an adjoint variable method, we develop a design sensitivity analysis (DSA) method applicable to 3-Dimensional heat conduction problems in steady state. Also, a topology design optimization method is developed using the developed DSA method. Design sensitivity expressions with respect to the thermal conductivity are derived. Since the already factorized system matrix is utilized to obtain the adjoint solution, the cost for the sensitivity computation is trivial. For the topology design optimization, the design variables are parameterized into normalized bulk material densities. The objective function and constraint are the thermal compliance of structures and allowable material volume, respectively, Through several numerical examples, the developed DSA method is verified to yield efficiency and accurate sensitivity results compared with finite difference ones. Also, the topology optimization yields physical meaningful results.

  • PDF

Structural Topology Optimization for A Natural Frequency (고유 진동수를 고러한 구조물의 위상 최적설계)

  • 임오강;이진석
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.110-120
    • /
    • 1999
  • Topology optimization is used for determining the best layout of structural components to achieve predetermined performance goals. In the present study, we consider that the objective function is to maximize the natural frequency of the structure for a designated mode and the constraint function is to constrain a total material usage. In this paper, using a topology optimization technique based on the homogenized material and the chessboard prevention strategy, we obtain the optimal layout and the reinforcement of an elastic structure. Several examples are presented to show the ability of the topology optimization technique used in this paper to deal with an optimal layout problem for a free vibration structure.

  • PDF

The study on Topology Optimization for Crashworthiness enhancement in Protective shell frame of Rolling Stock leading-cab (철도 차량 전두부 충돌 피해 저감을 위한 Protective shell frame의 위상 최적화에 관한 연구)

  • Kim, Hyun-Jun;Kim, Se-Hoon;Jung, Hyun-Seung;Kwon, Tae-Su;Suh, Myung-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.138-143
    • /
    • 2007
  • The leading-cab (high energy absorption area) of rolling stock directly is impacted on the frontal crash unlike other cabs. Thus, leading-cab has a structurally complex shape to solve getting concentrated loads. However, in order to enhance structural performance and to achieve the weight reduction of cab, changing the sizes and adjusting the distance of members do not take an effective result. Therefore, in design phase, to find the material arrangement which helps structural capacity be better should be done. This research applies the topology optimization to concept design of protective shell frame on strategy of crush energy absorption with considering pressure and vertical loads acting on the principal part of leading-cab. In this research, topology optimization method focuses on structural design, and which yields optimal material arrangement under given loads and boundary conditions using density method which has the density of material as design variables. Finally, this research presents optimal material arrangement and structure of protective shell frame on given loads with applying topology optimization.

  • PDF

Topology Design Optimization using Projection Method (프로젝션 기법을 활용한 위상 최적설계)

  • Ha, Seung-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.4
    • /
    • pp.293-299
    • /
    • 2016
  • In this paper, a projection method is introduced which is used in topology design optimization. In the projection method, each active design variable is projected onto the design domain depending on the shape and size of the projection functions, and the finite element under this projection receives a solid material. Furthermore, the size of the projection function defines the minimum length scale of the structural members. Therefore, a designer can easily apply design constraints without complicated post-processing procedure. In addition, the projection method can be combined with the homogenization theory, and applied to material design problem for composite materials. Topology design optimization for the unit-cell of the periodic structures can maximize the effective material properties, which yields the optimal material distribution with maximum bulk or shear moduli under a given volume fraction.

The use of topology optimization in the design of truss and frame bridge girders

  • Kutylowski, Ryszard;Rasiak, Bartosz
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.67-88
    • /
    • 2014
  • It is shown that topology optimization is a valuable tool for the design of bridge girders. This paper is a follow-up to (Kuty${\l}$owski and Rasiak 2014) and it includes an analysis of truss members' outer dimensions dictated by the standards. Moreover, a frame bridge girder mapped from a selected topology is compared with a typical frame girder on the basis of (Kuty${\l}$owski and Rasiak 2014). The analysis shows that topology optimization by means of the proposed algorithm yields a topology from which one can map a frame bridge girder requiring less material for its construction than the typical frame girder currently used in bridge construction.