Browse > Article
http://dx.doi.org/10.7734/COSEIK.2016.29.4.293

Topology Design Optimization using Projection Method  

Ha, Seung-Hyun (Department of Ocean Engineering, Korea Maritime and Ocean University)
Publication Information
Journal of the Computational Structural Engineering Institute of Korea / v.29, no.4, 2016 , pp. 293-299 More about this Journal
Abstract
In this paper, a projection method is introduced which is used in topology design optimization. In the projection method, each active design variable is projected onto the design domain depending on the shape and size of the projection functions, and the finite element under this projection receives a solid material. Furthermore, the size of the projection function defines the minimum length scale of the structural members. Therefore, a designer can easily apply design constraints without complicated post-processing procedure. In addition, the projection method can be combined with the homogenization theory, and applied to material design problem for composite materials. Topology design optimization for the unit-cell of the periodic structures can maximize the effective material properties, which yields the optimal material distribution with maximum bulk or shear moduli under a given volume fraction.
Keywords
projection method; topology design optimization; length scale; composite materials; homogenization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bendsoe, M.P., Kikuchi, N. (1998) Generating Optimal Topologies in Structural Design using a Homogenization Method, Comput. Methods Appl. Mech. & Eng., 71, pp.197-224.
2 Cha, S.-H., Lee, S.-W., Cho, S. (2013) Experimental Validation of Topology Design Optimization, J. Comput. Struct. Eng., 26(4), pp.241-246.
3 Guedes, J., Kikuchi, N. (1990) Preprocessing and Postprocessing for Materials based on the Homogenization Method with Adaptive Finite Element Methods, Comput. Methods Appl. Mech. & Eng., 83, pp.143-198.   DOI
4 Guest, J.K. (2015) Optimizing the layout of Discrete Objects in Structures and Materials: A Projectionbased Topology Optimization Approach, Comput. Methods Appl. Mech. & Eng., 283, pp.330-351.   DOI
5 Guest, J.K., Asadpoure, A., Ha, S.-H. (2011) Eliminating Beta-Continuation from Heaviside Projection and Density Filter Algorithms, Struct. & Multidiscipl. Optim., 44(4), pp.443-453.   DOI
6 Guest, J.K., Prevost, J.H., Belytschko, T. (2004) Achieving Minimum Length Scale in Topology Optimization using Nodal Design Variables and Projection Functions, Int. J. Numer. Methods Eng., 61, pp.238-254.   DOI
7 Ha, S.-H., Guest, J.K. (2014) Optimizing Inclusion Shapes and Paterns Inperiodic Materials using Discrete Object Projection, Struct. & Multidiscipl. Optim., 50(1), pp.65-80.   DOI
8 Hassani, B., Hinton, E. (1998) A Review of Homogenization and Topology Optimization II-Analytical and Numerical Solution of Homogenization Equations, Comput. & Struct., 69, pp.719-738.   DOI
9 Sigmund, O. (1994) Materials with Prescribed Constitutive Parameters: an Inverse Homogenization Problem, Int. J. Solids & Struct., 31, pp.2313-2329.   DOI
10 Sigmund, O. (2001) A 99 line Topology Optimization Code Written in Mathlab, Struct. & Multidiscipl. Optimi., 21, pp.120-127.   DOI
11 Sigmund, O. (2007) Morphology-based Black and White Filters for Topology Optimization, Struct. & Multidiscipl. Optimi., 33, pp.401-424.   DOI
12 Sigmund, O., Peterson, J. (1998) Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards, Meshdependencies and Local Minima, Struct. Optimi., 16, pp.68-75.   DOI
13 Svanberg, K. (1987) The Method of Moving Asymptotesa New Method for Structural Optimization, J. Numer. Methods Eng., 24, pp.359-373.   DOI