• Title/Summary/Keyword: material monitoring system

Search Result 422, Processing Time 0.03 seconds

An Analysis on Electrical Property Measurement of Catenary System in Railway (철도 전차선로 전기적 특성 검측 기술 분석)

  • Park, Young;Cho, Yong-Hyeon;Jung, Ho-Sung;Lee, Ki-Won;Gwon, Sam-Yeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.115-115
    • /
    • 2010
  • This paper introduces a measurement system that measures behavior and electrical characteristics of overhead contact line irregular sections in real-time. For verification, we developed a prototype of the real-time overhead contact line irregular section behavior measurement system and a monitoring system for field tests. The current and temperature of contact wires and messenger wires were measured real-time by applying the system at KTX a commercial line. Therefore, acquiring data is possible with the developed system and this system that measures one of the fundamental and key factors, the catenary current, should be applicable to various areas such as detecting characteristics for designing overhead contact lines, enhancing speed, and enhancing energy.

  • PDF

A Study on the Development of a Control and Monitoring System for Impressed Current Corrosion Protection (선박용 차세대 외부전원방식 제어 및 감시 시스템 UNIT 개발)

  • Kim, Y.B.;Kim, B.Y.;Suh, J.H.;Kim, J.W.
    • Journal of Power System Engineering
    • /
    • v.10 no.2
    • /
    • pp.104-110
    • /
    • 2006
  • Corrosion has been around for all of recorded history. Cathodic protection is the electrical solution to the corrosion problem. Corrosion is not exactly a new topic. It has been around since the beginning of time. Corrosion is simply the loss of material resulting from current leaving a metal, following through a medium, and returning to the metal at a different point. Corrosion takes many forms and has various names, such as oxidation, rust, chemical, and bacteria action. Regardless of the agent, all corrosion is the result of electrical current flow. Various methods are used to treat corrosion or to try to prevent ti. Some of these include chemical treatment. coatings, and electrical current. Especially, proper impressed current can stop corrosive action on the protected surface. In this article, we introduce the Impressed Current Cathodic Protection (ICCP) Control and monitoring system developed by ourselves. The ICCP system is composed of a power supply, anode, reference electrode and controller. The main issue is to control the current flow on the desired value such that it is possible to force a metal to be more negative(cathodic) than the natural state. From the this process, we can achieve the cathodic protection. Of course, in the developed system, the necessary functions are possessed, such as remote control, monitoring of system fault detection etc. Some experimental results show the system performance and usefulness.

  • PDF

Development of Moving and Attaching Diagnosis Device Using IoT (IoT 활용 이동착탈식 열화 진단 장치 개발)

  • Ka, Chool-Hyun;Lee, Dong-Gyu;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.596-601
    • /
    • 2017
  • The advancement and diversification of urban functions has caused an increasing need to improve the reliability of power supplies. The diversification of urban areas causes social disruptions by paralyzing urban functions during power outages. A large power outage occurs in the event of an accident, owing to the subduction of distribution lines. Therefore, in recent years, for the sake of the environment and safety, the safety diagnosis of electric power facilities has become an important issue. In this system, because thermal information changes rapidly during unattended monitoring owing to heat concentration phenomenon due to abnormal load or deterioration, studies have been conducted on the development of a device that can notify the manager at all times.

Wireless Sensor for Diagnostics of Electric Equipments (전력 설비 감시를 위한 무선 센서)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.98-102
    • /
    • 2008
  • Methods and analysis of a simple wireless sensor concept for detecting and locating faults as well as for load monitoring are presented. The concept is based on distributed wireless sensors that are attached to the incoming and outgoing power lines of secondary substations. A sensor measures only phase current characteristics of the wire it is attached to, is not synchronized to other sensors and does not need configuration of triggering levels. The main novelty of the concept is in detecting and locating faults by combining power distribution network characteristics on system level with low power sampling methods for individual sensors. This concept enables the sensor design to be simple, energy efficient and thus applicable in new installations and for retrofit purposes in both overhead and underground electrical distribution systems.

  • PDF

직렬아크 방전의 주파수 스펙스럼 분석

  • Kim, Seon-Jae;Jeong, Gwang-Seok;Park, Dae-Won;Gil, Gyeong-Seok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.03b
    • /
    • pp.24-24
    • /
    • 2010
  • In this paper, we analyzed the frequency spectrum of electromagnetic waves which is generated by series arc discharges to develop a condition monitoring technique in a closed-distribution board. We fabricated an arc generator specified in UL1699 to simulate series arc discharge. The experiment was carried out in an electromagnetic shielding room, and the measurement system consists of a Ultra Log Antenna and a EMI Test Receiver. The results showed that the frequency spectrum during series arc discharges was distributed in ranges of 30~500 [MHz], and the peak values were existed at 40 [Mhz] and 80 [MHz].

  • PDF

On-line Condition Monitoring Technology of Railway Electrification System (도시철도 전기설비 온라인 상태진단 기술)

  • Kim, Do-Yoon;Jung, Ho-Sung;Park, Young;Lee, Sang-Bin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.500-500
    • /
    • 2008
  • 최근들어, 도시철도 전력설비에는 온라인 상태진단이 가능한 센서를 설치하여 각 기기의 상태를 상시 감시하는 시스템이 도입되고 있다. 이러한 기술이 적용됨으로써 전력설비의 교체 주기를 판단하고, 사고를 미연에 방지 하는 등의 최적의 관리를 할 수 있게 되었다. 그러나 운영기관에 따라 다양한 방법의 진단설비가 설치되어 있어 유지보수가 어려워, 도시철도에 적합한 진단시스템의 개발이 요구되어 지고 있다. 도시철도 주요 전기설비로는 변압기, 단로기, 차단기, 정류기 등이 있다. 현재 이를 진단하기 위한 방법으로는 각 장치에 따라 부분방전시험, 유전정접시험, 절연유분석시험, 차단기동작시험 등이 있다. 본 연구에서는 현재 국내 외에서 제시되고 있는 전기설비의 온라인 상태진단 기술을 조사하고, 상용화된 온라인 상태진단 시스템을 분석하여 도시철도 전기설비에 적용 가능한 상태진단 항목과 상태진단 기법을 조사, 분석하였다.

  • PDF

Evaluation of Thermography Camera Using Molded Optical Lens for Medical Applications (몰드성형 광학렌즈를 이용한 의료기기용 열화상카메라 체열진단의 적용도 평가)

  • Ryu, Seong Mi;Kim, Hye-Jeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.8
    • /
    • pp.624-628
    • /
    • 2013
  • With the recent development of less-costly uncooled detector technology, expensive optics are among the remaining significant cost drivers in the thermography camera. As a potential solution to this problem, the fabrication of IR lenses using chalcogenide glass has been studied in recent years. We report on the molding and evaluation of a ultra-precision chalcogenide-glass lens for the thermography camera for body-temperature monitoring. In addition, we fabricated prototype thermography camera using the chalcogenide-glass lens and obtained the thermal image from the camera. In this work, it was found out that thermography camera discerned body-temperature between 20 and $50^{\circ}C$ through the analysis of thermal image. It is confirmed that thermography camera using the chalcogenide-glass lens is applicable to the body-temperature monitoring system.

Real- Time Co etchant condiction monitoring system in RGB sensor (PCB 제조공정을 위한 습식 구리 에칭 용액의 실시간 모니터링 시스템)

  • An, Jong-Hwan;Lee, Seok-Jun;Kim, Lee-Chul;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.548-549
    • /
    • 2007
  • 과거 PCB 제조의 주된 화제는 다양한 산업분야의 발전을 위해 한정된 시간 안에 좀 더 많은 PCB를 양산하는 기술 개발에 집중되어 있었지만, 현재는 비정상적인 공정 상태를 파악함으로써 제조 공정 환경에서의 오류를 줄여 전체 수률을 높이는 방법에 시선을 돌리고 있다. PCB 에칭의 경우 에칭 용액의 상태를 실시간으로 모니터링 하는 것이 중요하다. 본 논문에서는 기존 애칭용액의 상태를 판단할 때 사용되는 ORP 센서 대신, RGB 센서를 이용하여 실시간으로 용액의 상태를 모니터링 할 수 있는 시스템을 개발 하였다. 개발된 시스템을 이용하여 기존 ORP 시스템과의 비교 분석을 및 RGB 센서률 이용한 모니터링 방법이 ORP 센서를 이용한 방법 보다 좀 더 쉽고 정확하게 에칭 액의 상태를 모니터링할 수 있다는 것을 확인 하였다.

  • PDF

A Study for plasma nonuniformity measurement by PDM Tool (PDM Tool을 이용한 plasma nonuniformity 측정에 관한 연구)

  • 김상용;서용진;이우선;정헌상;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.75-78
    • /
    • 2000
  • This paper is estimated to enhance yield improvement and device reliability using PDM(plasma damage monitoring) system capable of in-suit detection about plasma nonuniformity. PDM Tool is the non-contact method of wafer and surface potential electrode(kelvin probe). Its tool measures Vox(oxide barrier) with charge created by plasma. It's possible to inspect the wafer damage generated by plasma charge and analysis of in-situ monitoring data. we obtained the good data which is continuously prevented from plasma damage using its tool for 10weeks. This tool is contributed to preventive steps contemporaneously inspecting the difference of inter-chamber.

  • PDF

A Study on Self-Healing Bolted Joints using Shape Memory Alloy (형상기억합금을 이용한 자가치유 볼트접합부 시스템에 관한 연구)

  • Chang, Ha-Joo;Lee, Chang-Gil;Park, Seung-Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper describes the smart structural system that uses smart materials for real-time monitoring and active control of bolted joints in steel structures. The impedance-based structural health monitoring (SHM) techniques, which utilize the electro-mechanical coupling property of piezoelectric materials, was used to detect loose bolts in bolted joints. By monitoring the measured electrical impedance and comparing it with the measured baseline, a bolt loosening damage was detected. The damage was evaluated quantitatively using the damage metrics in conductance signature with respect to the healthy states. When loosening damage was detected in the bolted joint, the external heater actuated the shape memory alloy (SMA) washer. Then the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. An experiment was conducted by integrating the piezoelectric-material-based SHM function and the SMA-based active control function on a bolted joint, after which the performance of thesmart self-healing joint system was investigated.