• Title/Summary/Keyword: material flow

Search Result 3,377, Processing Time 0.027 seconds

A Numerical Simulation of Residual Current and Material Transportation in Hiroshima Bay, Japan (황도만에서의 잔차류와 물질소송의 수치모형실험)

  • 이인철
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.1
    • /
    • pp.45-51
    • /
    • 2001
  • In order to clarify the seasonal variation of the residual current and the material transportation process in Hiroshima Bay, JAPAN, the real-time simulation of residual current and particle tracking by using the Euler-Lagrange model were carried out. The calculated tidal current, water temperature, and salinity showed good agreement with the observed ones. The residual currents showed a southward flow pattern at the upper layer, and a northward flow pattern at the lower layer. The flow structure of the residual current in Hiroshima Bay is an estuarine circulation affected by density flow and wind driven current. The residual current plays an important role of material transportation in the bay.

  • PDF

Eulerian Two-Phase Flow Analysis for Solid-Liquid Mixing in a Industrial Mixer (산업용 교반기의 고체-액체 혼합에 대한 Eulerian Two-Phase 유동해석)

  • Song, Ae-Kyung;Hur, Nahm-Keon;Won, Chan-Shik;Ahn, Ick-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.471-474
    • /
    • 2006
  • The Mixer is apparatus that help precipitation or an inhomogeneous distribution of various phases to be mixed and that user makes necessary material mixing one or the other. Mainly the mixer which is used from chemical and food industry is very important system in engineering that mixes the material. The inside flow of the mixer under the actual states which put a basis in flow of the fluid is formed rotation of the impeller. The inside flow of impeller will be caused by various reasons change with shape of impeller, number of rotation, mixing material and flow pattern of free surface etc. Also mixer study depended in single-phase flow and experimental research. So the numerical analysis of flow mixing solid-fluid particle is simulated. It is become known, that the case where agitator inside working fluid includes the solid particle the sinkage reverse which the solid particle has decreases an agitation efficiency. From the research which it sees the hazard solid which examines the effect where the change of the sinkage territory which it follows agitation number of revolution and diameter of the particle goes mad to an agitator inside flow distribution - numerical analysis the inside flow distribution of liquid state with Eulerian Two-Phase Method.

  • PDF

Characterization of Thermal Contact Resistance Doped with Thermal Interface Material (접촉열전도재를 도포한 접촉열저항 특성연구)

  • Bajracharya, Iswor;Ito, Yoshimi;Nakayama, Wataru;Moon, Byeong-Jun;Lee, Sun-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.9
    • /
    • pp.943-950
    • /
    • 2013
  • This paper describes the thermal contact resistance and its effect on the performance of thermal interface material. An ASTM D 5470 based apparatus is used to measure the thermal interface resistance. Bulk thermal conductivity of different interface material is measured and compared with manufacturers' data. Also, the effect of grease void in the contact surface is investigated using the same apparatus. The flat type thermal interface tester is proposed and compared with conventional one to consider the effect of lateral heat flow. The results show that bulk thermal conductivity alone is not the basis to select the interface material because high bulk thermal conductivity interface material can have high thermal contact resistance, and that the center voiding affects the thermal interface resistance seriously. On the aspect of heat flow direction, thermal impedance of the lateral heat flow shows higher than that of the longitudinal heat flow by sixteen percent.

A Study on the Flow Characteristics of Bubbles in a Fluidized Bed (유동층에서 기포의 유동특성에 관한 연구)

  • 김용섭
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.117-124
    • /
    • 1996
  • A fluidized bed combustion chamber is widely used to incinerate waste material. The most important factor designing the incinerator is the flow characteristics in a fluidized bed, because combustion efficiency is influenced by the flow characteristics. This paper has invesitigated the flow characteristics of bubbles in fluidized bed by means of meassuring a pressure fluctuation in the fluidized bed. A pressure probe system has used to measure the pressure. The data concerned with bubble rising velocity, bubble size, distribution of bubbles and frequency of bubble generation or decay are obtained to find the flow characteristics of bubbles in the fluidized bed. The result obtained from this experimental study can be used to design the fuel feeding system of fluidized bed combustion type incinerator. And it is possible to predict the mixing of waste material and fluidizing material.

  • PDF

Analysis of Key Performance Index for Advanced Logistics (물류산업의 선진화를 위한 성과지표 분석: IT서비스를 중심으로)

  • Jang, Hee-Seon
    • Convergence Security Journal
    • /
    • v.13 no.1
    • /
    • pp.25-30
    • /
    • 2013
  • In this paper, the key performance index for advanced logistics is analyzed, and the specific requirements for the material flow IT services are proposed to improve the world competitiveness of the material flow industries and to implement the advanced logistics in Korea by survey research. The key performance index is classified into three types of efficiency, sustainability and economics, and two classes of enterprise and public for IT services are proposed. In addition to, for case studies, the survey analysis for the Pyeongtaek Port is performed to diagnose the material flow enterprise and to analyze the priorities of the IT services for Port's employee, trade enterprise, public service personnel, and local resident. From the results, to improve the productivity and efficiency of the enterprise, the secure the professional man-power and standardization are needed, and the automation, u-Port, green technology and material flow security for the IT services are required.

Study on Flow Interaction between Bubble and Phase Change Material according to Injection Location (주입 위치에 따른 기포와 상변화물질의 유동 상호 작용에 관한 연구)

  • Min Hyeok Kim;Yun Young Ji;Dong Kee Sohn;Han Seo Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.75-84
    • /
    • 2023
  • In this study, we conducted analysis of bubble dynamics and flow of liquid phase change material(PCM) using shadowgraphy and particle image velocimetry(PIV). Characteristics of internal flow varied depending on locations of injection when solid PCM was liquefied from heated vertical wall. When bubbles rose immediately, they exhibited elliptical shape and zigzag trajectory. In contrast, when bubbles rose after merging at the bottom of solid PCM, with equivalent diameter for the inter-wall distance of 0.64 or greater, they showed a jellyfish shape and strong rocking behavior. It was observed by the PIV that the small ellipse bubbles made most strong flow inside the liquid PCM. Furthermore, the flow velocity was highest in the case of front injection, as the directions of temperature gradients and bubble-driven flow were aligned. The results underscore the significant influence of injection location on various characteristics, including bubble size, shape, rising path of bubbles, and internal flow.

A Cross-check of Domestic Lead Material Flow in Public Database Sets for the Recycling Status Analysis (재활용 현황파악을 위한 공공 자료별 국내 납 물질 흐름 상호 확인)

  • Lee, Sang-hun;Kim, Jungeun
    • Resources Recycling
    • /
    • v.30 no.3
    • /
    • pp.63-69
    • /
    • 2021
  • Supply deficit of lead commodities and environmental pollution can be simultaneously resolved through the recovery and recycling of waste lead. The recent recovery of lead through recycling of the lead battery waste is a positive development. To maximize the effect of lead recovery and recycling in the future, the updated status of the lead material flow should be recognized. However, such an analysis at the preliminary stages may be cumbersome owing to the complexity and diversity of emission sources and material streams. At this stage, a preliminary screening by domestic lead flow using public information should be feasible. Therefore, in this study, using the data from the UN Comtrade and domestic PRTR (Pollutant Release and Transfer Register) databases, the amounts of lead import, emission, and transfer were identified and cross-checked with the domestic lead flow described in the National Material Flow Analysis database. The lead flow for major categories such as waste lead-acid batteries showed a rough consistency between the databases.

Thermal flow intensity factor for non-homogeneous material subjected to unsteady thermal load (비정상 열 하중을 받는 이질재료의 열량 집중 계수 해석)

  • Kim, Gui-Seob
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.16 no.4
    • /
    • pp.26-34
    • /
    • 2008
  • This article provides a comprehensive treatment of cracks in non-homogeneous structural materials such as functionally graded materials (FGMs). It is assumed that the material properties depend only on the coordinate perpendicular to the crack surfaces and vary continuously along the crack faces. By using laminated composite plate model to simulate the material non-homogeneity, we present an algorithm for solving the system based on Laplace transform and Fourier transform techniques. Unlike earlier studies that considered certain assumed property distributions and a single crack problem, the current investigation studies multiple crack problem in the FGMs with arbitrarily varying material properties. As a numerical illustration, transient thermal flow intensity factors for a metal-ceramic joint specimen with a functionally graded interlayer subjected to sudden heating on its boundary are presented. The results obtained demonstrate that the present model is an efficient tool in the fracture analysis of non-homogeneous material with properties varying in the thickness direction.

  • PDF

A New Vehicle Dispatching in Semiconductor Intra-Bay Material Handling System (반도체 Intra-Bay 물류시스템에서의 차량 배차)

  • Koo, Pyung-Hoi;Suh, Jung-Dae;Jang, Jae-Jin
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.93-98
    • /
    • 2003
  • This paper addresses an AGV dispatching problem in semiconductor clean-room bays where AGVs move cassettes of wafers between machines or machines and a central buffer. Since each machine in a bay has a local buffer of limited capacity, material flow should be controlled in a careful way to maintain high system performance. It is regarded that two most important performance measures in a semiconductor bay are throughput rate and lead-time. The throughput rate is determined by a bottleneck resource and the lead-time depends on smooth material flow in the system. This paper presents an AGV dispatching procedure based on the concept of theory of constraints (TOC), by which dispatching decisions are made to utilize the bottleneck resource at the maximum level and to smooth the flow of material. The new dispatching procedure is compared with existing dispatching rules through simulation experiments.

Preform Design Technique by Tracing The Material Deformation Behavior (재료의 변형거동 추적을 통한 예비형상 설계)

  • Hong J. T.;Park C. H.;Lee S. R.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.91-94
    • /
    • 2004
  • Preform design techniques have been investigated in efforts to reduce die wear and forming load and to improve material flow, filing ratio, etc. In hot forging processes, a thin deformed part of a workpiece, known as a flash, is formed in the narrow gap between the upper and lower tools. Although designers make tools that generate a flash intentionally in order to improve flow properties, excessive flash increases die wear and forming load. Therefore, it is necessary to make a preform shape that can reduce the excessive flash without changing flow properties. In this paper, a new preform design technique is proposed to reduce the excessive flash in a metal forging process. After a finite element simulation of the process is carried out with an initial billet, the flow of material in the flash region is traced from the final shape to the initial billet. The region belonging to the flash is then easily found in the initial billet. The finite element simulation is then carried out again with the modified billet from which the selected region has been removed. In several iterations of this technique, the optimal preform shape that minimizes the amount of flash without changing the forgeability can be obtained.

  • PDF