• 제목/요약/키워드: material deterioration

검색결과 640건 처리시간 0.026초

Humidity Absorbing Deterioration Characteristics of Modified Epoxy Resin System with SN (SN으로 개질된 에폭시 수지 계의 흡습열화 특성)

  • 조영신;심미자;박수길;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.421-424
    • /
    • 1996
  • Effects of humidity absorbing deterioration on AC dielectric breakdown characteristics of modified epoxy resin system with SN(succinonitrile) were investigated. As the forced humidity absorbing deterioration proceeded under high temperature and humidify, glass transition temperature increased. The dielectric breakdown strength increased and then decreased at deterioration cycles higher than 2. Not only, the increment of thermal stability but also, the physical detects such as Internal cracks and voids occurred during the humidity absorbing deterioration cycle were the main causes of the change in dielectric properties.

  • PDF

Estimation of Deterioration and Weighting Factors in Pipes of Water Supply Systems (상수관로의 노후도 영향인자 및 가중치 산정에 관한 연구)

  • Kim, Eung-Seok;Kim, Joong-Hoon;Lee, Hyun-Dong
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제16권6호
    • /
    • pp.686-699
    • /
    • 2002
  • The purpose of this study is to estimate deterioration factors and weighting factors in pipe network which each local self-governments takes rehabilitation and replacement work present time. Deterioration factors in pipe network are able to effected of specific province or location related with water supply. Most of water supply pipes are laid under the ground, it is hard to quantify deterioration degree of water system. Moreover, the timing and economic limitation and insufficient information on the spot survey gives a difficulty to look over how old water supply system is. Accordingly, this study collects and analyses five data as the laying environment, visual analysis, analysis of soil contents, analysis of pipe material, and questionary survey data in water pipe of A city. The deterioration factor estimates 14 factors with excavation and experimental analysis and 9 factors without excavation and experimental analysis. Also, the weighting factors are estimated by using the multiple linear regressions and the linear programming. The estimated deterioration factor and weighting results are compared the analysis result of visual, pipe material, and soil contents with the Probabilistic Neural Network Model. Consequently, the model results of estimated 9 factors in this study and 14 factors show the 1-2% difference. The result show that the proposed model could be used to decide the deterioration condition of pipe line with real excavation and experimental analysis.

Temperature Dependence of AC Treeing Deterioration in DGEBA/MDA/GN System (DGEBA/MDA/GN 계에서 AC 트링열화의 온도의존성)

  • 안현수;심미자;박수길;김상욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.425-428
    • /
    • 1996
  • Treeing deterioration which is one of the main cause of breakdown in insulating materials is affected by temperature, applied voltage and frequency. In this study, GN was introduced to improve impact strength of DGEBA/MDA system and the temperature dependence of AC treeing deterioration in this system was investigated. Dielectric breakdown strength decreased with the increment of temperature. As temperature increased, the growth rate of tree Increased.

  • PDF

Analysis of Electrical Characteristics Due to Deterioration of Electromagnetic Contactor (전자접촉기 열화에 따른 전기적 특성 분석)

  • Choi, Sun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • 제32권5호
    • /
    • pp.407-412
    • /
    • 2019
  • In this paper, the changes in the electrical characteristics (arc energy, contact resistance, and bouncing phenomenon) due to the deterioration of the contact are analyzed. The results are generally consistent and can be analyzed for contact deterioration. The results of the experiment demonstrate that the arc energy is linearly related to the current when the contact samples and the voltage conditions are the same. The contact resistance varies due to multiple factors, but is generally within a certain range, and the contact deterioration can be determined. Contact stabilization can be detected by the decrease in the bouncing phenomenon due to deterioration (the change of the shape of the contact).

Development of Deterioration Diagnosis System for the R/C Structures - Mainly on Cause of Deterioration - (철근콘크리트 구조물의 열화 진단시스템 개발 - 열화요인 진단을 중심으로 -)

  • 이장화;박홍석;유영찬;김도겸;송영철
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.243-248
    • /
    • 1994
  • The purpose of this study is to develop Deterioration Diagnosis System for the Reinforced Concrete Structure which can be used preliminary in determining the factors causing deterioration by simple inspection and mapping of the indicators of deterioration. Total 29 items compromising material, structural and constructional factors causing deterioration were considered in this system. Also the indicators of deterioration were subdivided into 54 items such as concrete crack pattern and steel corrosion etc. Each indicator of deterioration was quantatified by allocating and giving grade to each item which has extra weight according to its conscquence. Satisfactory results were obtatined by applying this Diagnosis system to the indicators of deterioration in ref. [3]. Further research was required on the indicators of deterioration in construction site to enhance the field applicability of this system.

  • PDF

A Study on Adequacy of Pipe Deterioration Evaluation Methods using the Endoscope of Water Distribution Pipe (배수관 내시경 조사를 통한 간접적인 관 노후도 평가방법의 적정성 연구)

  • Choi, Tae Ho;Kang, Sin Jae;Choi, Jae Ho;Koo, Ja Yong
    • Journal of Korean Society of Water and Wastewater
    • /
    • 제26권5호
    • /
    • pp.669-683
    • /
    • 2012
  • The water supply pipes are buried across wide range of areas, so it is hard to spot them using excavation and takes a large amount of expense. Thus, there is a high risk for direct research and application, accompanying many difficulties in implementation of them. Therefore, it is more economical and convenient to use indirect evaluation variables than direct evaluation of the buried pipes in assessing the degree of pipe deterioration. To assess the degree of pipe deterioration using the indirect evaluation variables, it should be done first to identify how and to what extent they affect the degree of deterioration. This study measured the evaluation variables for pipe deterioration using the pipe endoscope and analyzed the measurement results and the degree of impact on the pipes. In addition, this study attempted to evaluate the adequateness of the pipe deterioration evaluation using the indirect variables based on the analysis results. The evaluation variables measured through the pipe endoscope were the thickness of sediments, size of scale, degree of desquamation and condition of connections. For the indirect evaluation variables, the data such as the property data from GIS pipe network map as well as the material, diameter, age and pipe lining material of the pipe, road type, leakage frequency, average water velocity and water pressure using the leakage repair records was collected. Using the collected data, this study comparatively analyzed the indirect evaluation variables for the degree of pipe deterioration and the results from the pipe endoscope to choose appropriate variables for pipe deterioration evaluation and calculated the weights of the indirect variables on the degree of deterioration. The results showed that the order of the impact of indirect variables on deterioration was pipe age > pipe lining material > road type > leakage frequency > average water velocity with their weights of 0.45, 0.20, 0.15, 0.10, and 0.10, respectively. Conclusively, the results suggest that the measures of sediment thickness, scale size, degree of desquamation and condition of connections are appropriate for the evaluation of pipe deterioration and sufficient for the analysis of the impact of the indirect variables on deterioration.

Performance Evaluation of Machine Learning Model for Seismic Response Prediction of Nuclear Power Plant Structures considering Aging deterioration (원전 구조물의 경년열화를 고려한 지진응답예측 기계학습 모델의 성능평가)

  • Kim, Hyun-Su;Kim, Yukyung;Lee, So Yeon;Jang, Jun Su
    • Journal of Korean Association for Spatial Structures
    • /
    • 제24권3호
    • /
    • pp.43-51
    • /
    • 2024
  • Dynamic responses of nuclear power plant structure subjected to earthquake loads should be carefully investigated for safety. Because nuclear power plant structure are usually constructed by material of reinforced concrete, the aging deterioration of R.C. have no small effect on structural behavior of nuclear power plant structure. Therefore, aging deterioration of R.C. nuclear power plant structure should be considered for exact prediction of seismic responses of the structure. In this study, a machine learning model for seismic response prediction of nuclear power plant structure was developed by considering aging deterioration. The OPR-1000 was selected as an example structure for numerical simulation. The OPR-1000 was originally designated as the Korean Standard Nuclear Power Plant (KSNP), and was re-designated as the OPR-1000 in 2005 for foreign sales. 500 artificial ground motions were generated based on site characteristics of Korea. Elastic modulus, damping ratio, poisson's ratio and density were selected to consider material property variation due to aging deterioration. Six machine learning algorithms such as, Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Artificial Neural Networks (ANN), eXtreme Gradient Boosting (XGBoost), were used t o construct seispic response prediction model. 13 intensity measures and 4 material properties were used input parameters of the training database. Performance evaluation was performed using metrics like root mean square error, mean square error, mean absolute error, and coefficient of determination. The optimization of hyperparameters was achieved through k-fold cross-validation and grid search techniques. The analysis results show that neural networks present good prediction performance considering aging deterioration.

A Study on Deterioration in Polymer Insulating Material at Cryogenic Temperature (극저온중의 고분자 절연재료의 열화연구)

  • 김현희;김영석;김상현;최효상;조광욱
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 1996년도 추계학술대회 논문집
    • /
    • pp.311-315
    • /
    • 1996
  • This Paper is to discribe the ac treeing deterioration in Polyethylenetherphthalate (PET) at various temperature. The AC tree was investigated at 77K using L$N_2$. The experimental results show that V-t characteristics was an inverse proportion to temperature. The progress of tree initiation and growth were also to temperature.

  • PDF

Influence of System Voltage Harmonics on Arrester Deterioration Diagnostic Techniques by Leakage Current Measurement (누설전류측정에 의한 피뢰기 열화진단기술에 있어 전원고조파의 영향)

  • Kil, Gyung-Suk;Han, Joo-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2002년도 제4회 영호남학술대회 논문집
    • /
    • pp.142-145
    • /
    • 2002
  • This paper describes an influence of system voltage harmonics on arrester deterioration diagnostic techniques based on leakage current measurement because the resistive current is composed of two components caused by nonlinear characteristics of arrester and by system voltage harmonics. Resistive leakage currents of arresters, which can be evaluated by the third harmonic component of total leakage currents, increase with its deterioration progress. In this paper, we developed a PSpice model for ZnO arrester to simulate the harmonics' effect described above. In simulation, pure sinusoidal voltage and the $3^{rd}$ harmonic voltage are applied to the model, and the leakage current changes are compared. The simulation results showed that the magnitudes of resistive leakage current depend not only on the phase of system voltage harmonics but also on the magnitude of it.

  • PDF

Study on Long-term Deterioration Properties of Porcelain Insulators with Aluminous System (알루미나계 자기애자의 장기 피로특성에 관한 연구)

  • Han, Se-Won;Cho, Han-Goo;Lee, Dong-Il;Cho, In-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.562-563
    • /
    • 2005
  • In case of aged porcelain, the failure in basic performance tests happened in cool-heat tests. Based on this characteristic, we studied the method predicting failure phenomena through more severe accelerated cool-heat ageing and accelerating thermal mechanical performance tests. Test results indicated that the thermal stress by temperature gradient was more severe parameter than thermal stress by quenching cycles within a category of standard or accelerating methods. And there is no the deterioration of statistic strength, but the deterioration of strength according to accelerating tests is serious.

  • PDF