• Title/Summary/Keyword: matching algorithm

Search Result 2,267, Processing Time 0.03 seconds

A Scheduling of Switch Ports for IP Forwarding (IP 포워딩을 위한 스위치 포트 스케쥴링)

  • Lee, Chae-Y.;Lee, Wang-Hwan;Cho, Hee-K.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.25 no.2
    • /
    • pp.233-239
    • /
    • 1999
  • With the increase of Internet protocol (IP) packets the performance of routers became an important issue in internetworking. In this paper we examined the matching algorithm in gigabit router which has input queue with virtual output queueing. Port partitioning concept is employed to reduce the computational burden of the scheduler within a switch. The input and output ports are divided into two groups such that the matching algorithm is implemented within each input-output pair group in parallel. The matching is performed by exchanging input and output port groups at every time slot to handle all incoming traffics. Two algorithms, maximal weight matching by port partitioning (MPP) and modified maximal weight matching by port partitioning (MMPP) are presented. MMPP has the lowest delay for every packet arrival rate. The buffer size on a port is approximately 20-60 packets depending on the packet arrival rates. The throughput is illustrated to be linear to the packet arrival rate, which can be achieved under highly efficient matching algorithm.

  • PDF

Quantum-based exact pattern matching algorithms for biological sequences

  • Soni, Kapil Kumar;Rasool, Akhtar
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.483-510
    • /
    • 2021
  • In computational biology, desired patterns are searched in large text databases, and an exact match is preferable. Classical benchmark algorithms obtain competent solutions for pattern matching in O (N) time, whereas quantum algorithm design is based on Grover's method, which completes the search in $O(\sqrt{N})$ time. This paper briefly explains existing quantum algorithms and defines their processing limitations. Our initial work overcomes existing algorithmic constraints by proposing the quantum-based combined exact (QBCE) algorithm for the pattern-matching problem to process exact patterns. Next, quantum random access memory (QRAM) processing is discussed, and based on it, we propose the QRAM processing-based exact (QPBE) pattern-matching algorithm. We show that to find all t occurrences of a pattern, the best case time complexities of the QBCE and QPBE algorithms are $O(\sqrt{t})$ and $O(\sqrt{N})$, and the exceptional worst case is bounded by O (t) and O (N). Thus, the proposed quantum algorithms achieve computational speedup. Our work is proved mathematically and validated with simulation, and complexity analysis demonstrates that our quantum algorithms are better than existing pattern-matching methods.

The Alignment of Measuring Data using the Pattern Matching Method (패턴매칭을 이용한 형상측정 데이터의 결합)

  • 조택동;이호영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.307-310
    • /
    • 2000
  • The measuring method of large object using the pattern matching is discussed in the paper. It is hard and expensive to get the complete 3D data when the object is large or exceeds the limit of measuring devices. The large object is divided into several smaller areas and is scanned several times to get the data of all the pieces. These data are aligned to get the complete 3D data using the pattern matching method. The point pattern matching method and transform matrix algorithm are used for aligning. The laser slit beam and CCD camera is applied for experimental measurement. Visual C++ on Window98 is implemented in processing the algorithm.

  • PDF

The Merging Method of Point Data with Point Pattern Matching in 3D Measurement (3차원 형상측정에서 점 패턴매칭을 이용한 점 데이터의 결합방법)

  • 조택동;이호영;양상민
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.714-719
    • /
    • 2003
  • We propose a measuring method of large object using the pattern matching. It is hard and expensive to get the complete 3D data when the object is large and exceeds the limit of measuring devices. The large object is divided into several smaller areas and is scanned several times to get the data of all the pieces. These data are aligned to get the complete 3D data using the pattern matching method such as point pattern matching method and transform matrix algorithm. The laser slit beam and CCD camera are applied for the experimental measurement. Visual C++ on Windows 98 is implemented in processing the algorithm.

Local stereo matching using combined matching cost and adaptive cost aggregation

  • Zhu, Shiping;Li, Zheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.224-241
    • /
    • 2015
  • Multiview plus depth (MVD) videos are widely used in free-viewpoint TV systems. The best-known technique to determine depth information is based on stereo vision. In this paper, we propose a novel local stereo matching algorithm which is radiometric invariant. The key idea is to use a combined matching cost of intensity and gradient based similarity measure. In addition, we realize an adaptive cost aggregation scheme by constructing an adaptive support window for each pixel, which can solve the boundary and low texture problems. In the disparity refinement process, we propose a four-step post-processing technique to handle outliers and occlusions. Moreover, we conduct stereo reconstruction tests to verify the performance of the algorithm more intuitively. Experimental results show that the proposed method is effective and robust against local radiometric distortion. It has an average error of 5.93% on the Middlebury benchmark and is compatible to the state-of-art local methods.

A Study on Fast Stereo Matching Algorithm using Belief Propagation in Multi-resolution Domain (다해상도 영역에서 신뢰확산 알고리즘을 사용한 고속의 스테레오 정합 알고리즘에 관한 연구)

  • Jang, SunBong;Jee, Innho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.8 no.4
    • /
    • pp.67-73
    • /
    • 2008
  • In the Markov network which models disparity map with the Markov Random Field(MRF), the belief propagation algorithm is operated by message passing between nodes corresponding to each pixels. Belief propagation algorithm required much iteration for accurate result. In this paper, we propose the stereo matching algorithm using belief propagation in multi-resolution domain. Multi-resolution method based on wavelet or lifting can reduce the search area, therefore this algorithm can generate disparity map with fast speed.

  • PDF

Boundary Stitching Algorithm for Fusion of Vein Pattern (정맥패턴 융합을 위한 Boundary Stitching Algorithm)

  • Lim, Young-Kyu;Jang, Kyung-Sik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.05a
    • /
    • pp.521-524
    • /
    • 2005
  • This paper proposes a fusion algorithm which merges multiple vein pattern images into a single image, larger than those images. As a preprocessing step of template matching, during the verification of biometric data such as fingerprint image, vein pattern image of hand, etc., the fusion technique is used to make reference image larger than the candidate images in order to enhance the matching performance. In this paper, a new algorithm, called BSA (Boundary Stitching Algorithm) is proposed, in which the boundary rectilinear parts extracted from the candidate images are stitched to the reference image in order to enlarge its matching space. By applying BSA to practical vein pattern verification system, its verification rate was increased by about 10%.

  • PDF

Matching-based Advanced Integrated Diagnosis Method (매칭에 기반한 발전된 고장 진단 방법)

  • Lim, Yo-Seop;Kang, Sung-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.379-386
    • /
    • 2007
  • In this paper, we propose an efficient diagnosis algorithm for multiple stuck-at faults. Because of using vectorwise intersections as an important metric of diagnosis, the proposed diagnosis algorithm can diagnose multiple defects in single stuck-at fault simulator. In spite of multiple fault diagnosis, the number of candidate faults is drastically reduced. For identifying faults, the variable weight, positive calculations and negative calculations are used for the matching algorithm. To verify our algorithm, experiments were performed for ISCAS85 and full-scan version of ISCAS89 benchmark circuits.

Study on the Self Diagnostic Monitoring System for an Air-Operated Valve : Algorithm for Diagnosing Defects

  • Kim Wooshik;Chai Jangbom;Choi Hyunwoo
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.219-228
    • /
    • 2004
  • [1] and [2] present an approach to diagnosing possible defects in the mechanical systems of a nuclear power plant. In this paper, by using a fault library as a database and training data, we develop a diagnostic algorithm 1) to decide whether an Air Operated Valve system is sound or not and 2) to identify the defect from which an Air-Operated Valve system suffers, if any. This algorithm is composed of three stages: a neural net stage, a non-neural net stage, and an integration stage. The neural net stage is a simple perceptron, a pattern-recognition module, using a neural net. The non-neural net stage is a simple pattern-matching algorithm, which translates the degree of matching into a corresponding number. The integration stage collects each output and makes a decision. We present a simulation result and confirm that the developed algorithm works accurately, if the input matches one in the database.

Fast Matching Pursuit Method Using Property of Symmetry and Classification for Scalable Video Coding

  • Oh, Soekbyeung;Jeon, Byeungwoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.278-281
    • /
    • 2000
  • Matching pursuit algorithm is a signal expansion technique whose efficiency for motion compensated residual image has already been demonstrated in the MPEG-4 framework. However, one of the practical concerns related to applying matching pursuit algorithm to real-time scalable video coding is its massive computation required for finding dictionary elements. In this respective, this paper proposes a fast algorithm, which is composed of three sub-methods. The first method utilizes the property of symmetry in 1-D dictionary element and the second uses mathematical elimination of inner product calculation in advance, and the last one uses frequency property of 2-D dictionary. Experimental results show that our algorithm needs about 30% computational load compared to the conventional fast algorithm using separable property of 2-D gabor dictionary with negligible quality degradation.

  • PDF