Browse > Article
http://dx.doi.org/10.4218/etrij.2019-0589

Quantum-based exact pattern matching algorithms for biological sequences  

Soni, Kapil Kumar (Department of Computer Science and Engineering, Maulana Azad National Institute of Technology)
Rasool, Akhtar (Department of Computer Science and Engineering, Maulana Azad National Institute of Technology)
Publication Information
ETRI Journal / v.43, no.3, 2021 , pp. 483-510 More about this Journal
Abstract
In computational biology, desired patterns are searched in large text databases, and an exact match is preferable. Classical benchmark algorithms obtain competent solutions for pattern matching in O (N) time, whereas quantum algorithm design is based on Grover's method, which completes the search in $O(\sqrt{N})$ time. This paper briefly explains existing quantum algorithms and defines their processing limitations. Our initial work overcomes existing algorithmic constraints by proposing the quantum-based combined exact (QBCE) algorithm for the pattern-matching problem to process exact patterns. Next, quantum random access memory (QRAM) processing is discussed, and based on it, we propose the QRAM processing-based exact (QPBE) pattern-matching algorithm. We show that to find all t occurrences of a pattern, the best case time complexities of the QBCE and QPBE algorithms are $O(\sqrt{t})$ and $O(\sqrt{N})$, and the exceptional worst case is bounded by O (t) and O (N). Thus, the proposed quantum algorithms achieve computational speedup. Our work is proved mathematically and validated with simulation, and complexity analysis demonstrates that our quantum algorithms are better than existing pattern-matching methods.
Keywords
Biological sequence; exact pattern; Grover's operator; parallel match; pattern matching; speedup;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Faro and T. Lecroq, The exact online string matching problem: A review of the most recent results, ACM Comput. Surv. (CSUR) 45 (2013), 1-42.
2 E. Rivals, L. Salmela and J. Tarhio, Exact search algorithms for biological sequences, Algorithms in Computational Molecular Biology: Techniques, Approaches and Applications, Wiley, Hoboken, NJ, USA, 2011, pp. 91-111.
3 G. Raja and U. Srinivasulu Reddy, Maximum exact matches for high throughput genome subsequence assembly, IETE J. Res. (2019), 1-9. https://doi.org/10.1080/03772063.2019.1603085   DOI
4 O. Di Matteo et al., Fault tolerant resource estimation of quantum random access memories, IEEE Trans. Quantum Eng. 1 (2020), 1-13.
5 J. Biamonte et al., Quantum Machine Learning, arXiv preprint, CoRR, 2018, arXiv: arXiv:1611.09347v2.
6 T. Jones, A. Brow, and C. Benjamin, QuEST and high performance simulation of quantum computers, Sci. Reps. 9 (2018), 1-9.
7 X. Hao et al., Quantum algorithms for learning the algebraic normal form of quadratic Boolean functions, Quantum Inform. Process. 19 (2020), 1-22.   DOI
8 QuEST Simulated Code: https://github.com/profkapilsoni/ETRIJ
9 B. Haubold and T. Wiehe, Biological sequences and the exact string matching problem, in Introduction to computational biology, Springer, Basel, Switzerland, 2006, pp. 43-63.
10 P. Kalsi, H. Peltola, and J. Tarhio, Comparison of exact string matching algorithms for biological sequences, in Bioinformatics research and development, vol. 13, Springer, Berlin, Germany, 2008, pp. 417-426.
11 S. Das and K. Kapoor, Weighted approximate parametrerized string matching, AKCE Int. J. Graphs Comb. 14 (2017), 1-12.   DOI
12 M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information, 10th ed, Cambridge University Press, Cambridge, UK, 2010.
13 A. Montanaro, Quantum pattern matching fast on average, Springer J. Algorithmica 77 (2017), 16-39.   DOI
14 P. Neamatollahi et al., Simple and efficient pattern matching algorithms for biological sequences, IEEE Access 8 (2020), 38-46.
15 L. C. L. Hollenberg, Fast quantum search algorithms in protein sequence comparisons: Quantum bioinformatics, Phys. Rev. E 62 (2000), 1-5.   DOI
16 P. Mateus, A quantum algorithm for closest pattern matching, Inter. J. Theor. Phys. 52 (2003), 3970-3980.   DOI
17 S. I. Hakak et al., Exact string matching algorithms: Survey, issues, and future research directions, IEEE Access 7 (2019), 69614-69637.   DOI
18 C. Lomont, Robust string matching in O(N + M) quantum queries, Mathematics Subject Classification, arXiv preprint, CoRR, 2003, arXiv: quant-ph/0311043.
19 B. K. A. De Jesus, J. A. Aborot, and H. N. Adorna, Solving the exact pattern matching problem constrained to single occurrence of pattern p in string s using grover's quantum search algorithm, in Theory and practice of computation, vol. 7, Springer, Tokyo, Japan, 2013, pp. 124-142.
20 A. Mandviwalla, K. Ohshiro, and B. Ji, Implementing grover's algorithm on the ibm quantum computers, in Proc. IEEE Int. Conf. Big Data. (Seattle, WA, USA), 2018, pp. 2531-2537.
21 N. Benchasattabuse et al., Quantum rough counting and its application to grover's search algorithm, in Proc. Int. Conf. Comput. Commun. Syst. (Nagoya, Japan), Apr. 2018, pp. 21-24.
22 M. Lanzagorta and J. Uhlmann, Quantum computer science, Morgan & Claypool Publishers, San Rafael, CA, USA, 2008.
23 H. Ramesh and V. Vinay, String matching in O(n+ m) quantum time, J. Discrete Algorithm. 1 (2003), 103-110.   DOI
24 B. Valiron, Quantum computation: A tutorial, New Gener. Comput. 30 (2012), 271-296.   DOI
25 G. Cai, X. Nie, and Y. Haung, A fast hybrid pattern matching algorithm for biological sequences, in International Conference on Biomedical Engineering & Informatics, 2nd, IEEE, Tianjin, China, 2009, pp. 1-5.
26 B. Broda, Quantum search of a real unstructured database, Eur. Phys. J. Plus 131 (2016), 1-4.   DOI
27 QuEST Library: https://quest.qtechtheory.org/
28 V. Giovannetti, S. Llyod, and L. Maccone, Quantum random access memory, Phys. Rev. Lett. 100 (2008), 1-4.
29 J. A. Aborot, Quantum approximate string matching for large alphabets, in Proc. Theory Pract. Comput. (Cebu City, Philippines), Sept. 2017, pp. 37-50.
30 D. K. Park, F. Petruccione, and J. K. K. Rhee, Circuit based random access memory for classical data, Sci. Reps. 9 (2019), 1-8.   DOI
31 Beta Vulgaris: http://plants.ensembl.org/info/website/ftp/index.html
32 M. Naya Plasencia and A. Schrottenloher, Optimal merging in quantum k-xor and k-sum algorithms, in Advances in Cryptology-Eurocrapt 2020, vol. 12106, Springer, Cham, Switzerland, 2020, 1-46.
33 K. Kang, Two Improvements in grover's algorithm, in Proc. Chinese Control. Decis. Conf. (Qingdao, China), May 2015, pp. 1179-1182.