• Title/Summary/Keyword: manure application rate

Search Result 164, Processing Time 0.034 seconds

Carbon Mineralization in different Soils Cooperated with Barley Straw and Livestock Manure Compost Biochars (토양 종류별 보릿짚 및 가축분 바이오차 투입이 토양 탄소 무기화에 미치는 영향)

  • Park, Do-Gyun;Lee, Jong-Mun;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Park, Hye-Ran;Oh, Taek-Keun;Lee, Sun-Il
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.4
    • /
    • pp.67-83
    • /
    • 2022
  • Biochar is a carbon material produced through the pyrolysis of agricultural biomass with limited oxygen condition. It has been suggested to enhance the carbon sequestration and mineralization of soil carbon. Objective of this study was to investigate soil potential carbon mineralization and carbon dioxide(CO2) emissions in different soils cooperated with barely straw and livestock manure biochars in the closed chamber. The incubation was conducted during 49 days using a closed chamber. The treatments consisted of 2 different biochars that were originated from barley straw and livestock manure, and application amounts were 0, 5, 10 and 20 ton ha-1 with different soils as upland, protected cultivation, converted and reclaimed. The results indicated that the TC increased significantly in all soils after biochar application. Mineralization of soil carbon was well fitted for Kinetic first-order exponential rate model equation (P<0.001). Potential mineralization rate ranged from 8.7 to 15.5% and 8.2 to 16.5% in the barely straw biochar and livestock manure biochar treatments, respectively. The highest CO2 emission was 81.94 mg kg-1 in the upland soil, and it was more emitted CO2 for barely straw biochar application than its livestock biochar regardless of their application rates. Soil amendment of biochar is suitable for barely straw biochar regardless of application rates for mitigation of CO2 emission in the cropland.

Studies on the Application Rate of Cattle Slurry and Urea N on Productivity of Silage Corn and Leaching of Nitrogen in Lysimeter (액상발효우분(Cattle Slurry) 및 요소의 N 시용수준이 옥수수의 생산성과 N의 용탈에 관한 연구)

  • 육완방;최기춘
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • This study was conducted to investigate the effects of the application rate of cattle slury and urea N on productivity of corn and environmental pollution in com cultivation soil. The experiment was conformed in lysimeter which was constructed with 0.33m diameter and 1m height. This study was arranged in split plot design. Main plots were the application rate of mineral fertilizer, as urea, such as 0, 100 and 200kgN/ha and subplots were the application rate of cattle slurry, such as 0, 200 and 400kgN/ha. The results obtained were summarized as follows. 1. Dry matter yields of corn increased as the application rate of cattle slurry and urea increased. 2. Total nitrogen content of whole corn was increased as the application rate of cattle slurry and urea increased 3. The average nitrate content in leaching water by application rate of the slurry and urea N was 7.78$\mu\textrm{g}$/$m\ell$(ranged from 6.27 to 9.02$\mu\textrm{g}$/$m\ell$). Nitrate content was hardly influenced by application rates of the slurry and urea. However, nitrate content rises in proportion to a rise in precipitation.

Effects of Mixed Application of Chemical Fertilizer with Liquid Swine Manure on Agronomic Characteristics, Yield and Feed Value of Sorghum × Sorghum Hybrid for Silage in Paddy Field Cultivation (논 토양에서 사일리지용 수수 × 수수 교잡종 재배시 화학비료와 발효 돈분 액비 혼용 시용이 생육특성 및 영양성분에 미치는 영향)

  • Hwan, Hwang Joo;Lee, Sang Moo
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.4
    • /
    • pp.290-296
    • /
    • 2015
  • This study was conducted to investigate the influence of the mixed application of chemical fertilizer (CF) with liquid swine manure (LSM) on the agronomic characteristics, dry matter yield, minerals, and free sugar in cultivating Sorghum ${\times}$ Sorghum Hybrid (SSH) on paddy soil. The field experiment was designed in a randomized block design with three replications and consisted of CF 100% (C), CF 70% + LSM 30% (T1), CF 50% + LSM 50% (T2), CF 30% + LSM 70% (T3), and LSM 100% treatment (T4). The application of LSM was based only on the nitrogen (150 kg/ha). Plant length, leaf length, leaf width and stem diameter were significantly the lower in T4 (p<0.05). Stem hardness increased significantly (p<0.05) as the LSM application rate decreased. Fresh yield was the highest in T2, whereas the lowest in T3 (p<0.05). However, dry matter yields and TDN yield did not show significant difference among treatments. Crude protein was the highest in T1 (p<0.05). Crude fat content did not significant differences between the T1, T2, T3 and T4, but C showed a significantly different (p<0.05). NDF and crude fiber were the highest in T3 and C, respectively (p<0.05). However, ADF did not show significant difference among treatments. Total mineral contents were higher in the order of T1> T2> T4> T3> C (p<0.05). Free sugar contents were significantly higher at T1 and C as compared to other treatments. The analysis of all the above results suggests that the application of liquid swine manure is very effective, considering the yield performance and the content of mineral and free sugar. In addition, liquid swine manure may be possible to grow SSH without chemical fertilizer.

Effect of Basal Application of Effective Microorganisms on the Growth and Yield of Cucumber (유용미생물(EM) 기비시용 처리가 오이 생육 및 수량에 미치는 영향)

  • Kim, Young-Chil;Ann, Seoung-Won;Kang, Tae-Ju;Park, Gab-Soon
    • Journal of Environmental Science International
    • /
    • v.24 no.1
    • /
    • pp.17-23
    • /
    • 2015
  • This study was aimed to determine the effect of basal application of Effective Microorganisms (EM) on the grow and yield of cucumber. For treatments, the EM was applied to soil with fertilizer composed with $N-P_2O_5-K_2O$-manure (24.0-16.4-23.8-2,000kg) in the 1.0 strength (defined as EM+1S), 2/3 strength (defined as EM+2/3S), 1/2 strength (defined as EM+1/2S), without fertilizer (defined as EM), or only fertilizer in the 1.0 strength (defined as 1S). In result, there was no significant differences of organic substance content and pH with the EM treatment. While the EC (Electric conductivity) concentration was decreased, plant-available P (phosphorus) was markedly increased. Chlorophyll content was highest in the treatment of EM+standard application rate for both semi-forcing and retarding culture. In contrast, no significant difference was found in plant height and internode length under the fertilizer treatment. Weekly harvested number of cucumber was highest at the treatment of EM+standard application for the semi-forcing culture, while it was 3.6 at the EM+1/2 application for the retarding culture. Weekly yield was greatest at the EM+standard application treatment and decreased with the decrease of fertilizer application rate. In addition, weekly yield was significantly reduced in the treatment of EM. There was no significant difference in yields by production time with the fertilizer applications?. Yield was increased with temperature for the semi-forcing culture, while consistent pattern was maintained for the retarding culture.

Regional Application of the OECD Nitrogen Budget Considering Livestock Manure Compost (국내 가축분뇨 자원화 특성을 고려한 OECD 질소수지 산정법의 지역단위 적용 연구)

  • Lim, Do Young;Ryu, Hong-Duck;Chung, Eu Gene;Kim, Yongseok;Lee, Jae Kwan
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.5
    • /
    • pp.546-555
    • /
    • 2017
  • The Nutrient budget is one of the agricultural-environment indicators of OECD. A nutrient budget measures the surplus as the differential between the inputs and the outputs of within a certain boundary and within a specified period of time (i.e. one year). According to OECD, the annual nitrogen budget for Korea was $245kg\;N\;ha^{-1}$ in 2014, which corresponds to the first position among OECD countries. In Korea in 2014, about 90 % of livestock excreta was composted as solid and liquid manure, which are usually and customarily spread on agricultural land. The objectives of this study are intended to suggest methodology of the regional nitrogen budget as a nitrogen management tool, which considers conversion from raw excreta to composted manures based on the methodology of OECD/Eurostat, and application of the new method in an agricultural region of Korea. As a result, the calculated excess rate of hydrospheric nitrogen surplus was $251kg\;N\;ha^{-1}$ (in the region in 2014), which indicates the presence of potential risks emanating from excessive nitrogen, with regard to both export water and soil environments. The findings also assert that this was shown to be one of the most important elements in the nitrogen budget, which translates to the actual amounts of nitrogen lost during the solid composting process. To better understand the process and the reliability of the method, it is necessary to analyze the sensitivity of the relevant co-efficients used in the method in the near future.

Nutrient Balance during Rice Cultivation in Sandy Soil affected by the Fertilizer Management (사질논에서 벼 재배기간 중 시비방법별 양분수지)

  • Roh, Kee-An;Ha, Ho-Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.155-163
    • /
    • 1999
  • Nutrient balance during rice cultivation in the paddy of a local area under the environmental protection for drinking water supply was investigated. To compare nutrient balance in the paddy soil applied with different types of fertilization, 7 treatments were selected as followings : Recommended level of chemical fertilizers(R), Conventional fertilization(CF), Fresh cow manure(FCM), Cow manure compost(CMC), Straw compost+reduced chemical fertilizer(SCF), Fresh straw+recommended level of fertilizers(FSC), and no fertilization as control(C). Here, FCM, CMC and SCF were applied at the same level of total nitrogen as recommended in R. Rice yield was the highest in the recommendation(R) and fresh cow manure (FCM) treatments with $6,730kg\;ha^{-1}$(index 100), and followed by SCF (index 98), FSC (index 98), CMC(index 94), and CF(index 94). But statistically significant difference was not recognized among treatments except the control. Nitrogen infiltration loss was high in the simple chemical fertilizer treatments with $63kg\;ha^{-1}$ in CF and $58kg\;ha^{-1}$ in R during rice cultivation, respectively. Nitrogen infiltration loss was decreased below half level of chemical fertilizer treatments with cow manure treatments ($23kg\;ha^{-1}$ in FCM and $27kg\;ha^{-1}$ in CMC) and with reducing chemical fertilizer treatment by adding straw compost ($25kg\;ha^{-1}$). Phosphate was not leached during rice cultivation in paddy soil of a fluvial deposit type, in which oxidation horizon was developed broadly under around 15 cm depth of surface soil. Phosphate balance (A-B) was closed to 0 in all treatments except cow manure treatment (CMC), in which it was $+30kg\;ha^{-1}$ and show the possibility of over accumulation of phosphate by continuously replicated application of cow manure compost. Potassium balance was negative value in all but straw recycling treatment (FSC). It means that potassium was continuously supplied from soil minerals, uptaken by plants or eluted out of soil. In conclusion, by substituting inorganic fertilizer for organic fertilizer or reducing application rate of chemical fertilizer through mixing organic fertilizer, it would be possible to achieve the same rice yield as in the recommendation treatment and to decrease nutrient leaching below half level in rice paddy soil.

  • PDF

Application Effects of Organic Fertilizer Utilizing Livestock Horn Meal as Domestic Organic Resource on the Growth and Crop Yields (국내산 유기자원 우각을 활용한 유기질비료의 작물 생육 및 수량에 미치는 영향)

  • Jang, Jae-Eun;Lim, Gab-June;Lee, Jin-Gu;Yoon, Seuong-Hwan;Hong, Sang Eun;Shin, Ki Hae;Kang, Chang-Sung;Hong, Sun-Seong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.2
    • /
    • pp.19-30
    • /
    • 2019
  • Objective of this study was to develop an organic fertilizer utilizing domestic livestock horn meal and to investigate the application effect of rice and eggplant. The possibility of utilization of livestock horn meal as an organic resource to replace imported expeller cake fertilizer was examined. In order to select domestic organic resources with high nitrogen content, 8 kinds of organic matter such as chicken manure, fish meal, soybean meal, sesame meal, perilla meal, blood meal, livestock horn meal, and beer sludge were analyzed and organic resources with high nitrogen content were selected. In addition, the conditions for the production of organic fertilizers that can be used in organic agriculture were established by mixing of the rice husk biochar and the rice bran as the supplements with the raw materials for mixing ratios. The content of total nitrogen (T-N) in the livestock horn meal was 12.0 %, which was the next low in 13.5 % blood meal. The content of total nitrogen was 5.9 ~ 7.9 % in fish meal and oil cakes. Total nitrogen content of non-antibiotic chicken manure for organic farming was 3 % and nitrogen content in beer sludge was 3.5 %. Organic fertilizer was produced by using biochar, rice bran as a main ingredient of non-antibiotic chicken manure, livestock horn meal and beer sludge. Compared to nitrogen content (4.0 to 4.2 %) of imported expeller cake fertilizer (ECF), the nitrogen content of organic fertilizer utilizing domestic livestock horn meal is as high as 7.5 %. The developed organic fertilizer is met as Zn 400 mg/kg, Cu 120 mg/kg the quality of organic agricultural materials such as or less. To investigate the effect of fertilizer application on the crops, prototypes of developed organic fertilizer were used for the experiment under selected conditions. As a result of application the developed organic livestock horn meal fertilizer (LHMF) for cultivation of the rice and eggplant, the application quantity of the developed organic LHMF 100 % was decreased by 40 % compared to that of the mixed expeller cake fertilizer (MECF). The application of LHMF, which refers to the application rate corresponding to the nitrogen fertilization recommended by the soil test, was reduced by 40% compared to the application rate of MECF, but the same results were obtained in crop growth and yield. The selection of a new high concentration nitrogen source utilizing domestic organic resources and the development of organic fertilizer is the starting point of the research for substitution of imported ECF using domestic local resources at the present time that the spread of eco-friendly agriculture is becoming increasingly important. If it is expanded in the future, it is expected to contribute to the stable production of eco-friendly agricultural products.

Effect of Barley Green Manure on Rice Growth and Yield According to Tillage Date in Spring (녹비보리의 환원시기가 후작물 벼 생육 및 수량에 미치는 영향)

  • Kim, Min-Tae;Ku, Ja-Hwan;Jeon, Weon-Tai;Seong, Ki-Yeong;Park, Chang-Young;Ryu, Jin-Hee;Cho, Hyeoun-Suk;Oh, In-Seok;Lee, Yong-Hwan;Lee, Jong-Ki;Park, Man;Kang, Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.56 no.2
    • /
    • pp.119-123
    • /
    • 2011
  • To use barley as a green manure crop, this study has been conducted in Suwon, Gyeonggi-do to establish the barley green manure (BGM)-rice cropping system with emphasis on soil incorporation date and BGM density. The nitrogen (N) contents of rye and barley, grass green manure crops, were 1.4~2.4% at early growth stage and decreased rapidly to 0.6~1.0% at late growth stage. The biomass of barley was 449 kg/l0a at heading stage (HS) and increased to 421 kg/10a at 10 days after heading stage (DAH), 473 kg/10a at 20 DAH. C/N ratio of BGM was the lowest 26.3 at HS. The N contents of BGM was in the range of 0.9~1.5%, the highest at HS and gradually decreased, and the output of N were 4.3-6.3 kg/10a. The total amount of nitrogen, phosphorous and potassium of BGM showed the highest level at 10 DAH. Culm length of rice was relatively longer as the BGM application time was delayed. The application of BGM into soil increased plant height of rice by 7.2~7.7 em as compared to the plants treated with commercial fertilizer at recommended rate. but panicle length of rice showed a similar tendency in both the soil-applied of BGM and commercial fertilizer. N contents of unhulled rice was the highest at HS of BGM and followed by 10 DAH of BGM and 20 DAH of BGM. This trend could also be seen in rice straw. The yield of rice in the soil-applied of BGM was 10~15% lower than in the soil-applied of commercial fertilizer. Based on this study, application of BGM made it possible to save 30~50% of application amount of nitrogen fertilizer for following crops.

Effects of Liquid Pig Manure Application Level on Growth Characteristics, Yield, and Feed Value of Whole Crop Barley at Reclaimed Tidal Land in Southwestern Korea

  • Shin, Pyeong;Cho, Kwang-Min;Back, Nam-Hyun;Yang, Chang-Hyu;Lee, Geon-Hwi;Park, Ki-Hun;Lee, Dong-Sung;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.6
    • /
    • pp.579-585
    • /
    • 2014
  • This study was conducted to investigate liquid pig manure (LPM) application rates on the growth characteristics, yield, and feed value of whole crop barley in Yeongsangang and Saemangeum reclaimed tidal land. Electronic conductivity (EC), organic matter (OM), and available phosphate (Av. $P_2O_5$) increased in chemical properties of Yeongsangang and Saemangeum soil as raising LPM application level. As increasing LPM application level, exchangeable $Na^+$ significantly increased in Yeongsangang, while exchangeable $K^+$ significantly increased in Saemangeum. Plant height was not significantly different from LPM 100% to LPM 200% in Yeongsangang and in Saemangeum. Dry matter yield of whole crop barley increased steadily, but crop yield of LPM 200% in Yeongsangang ($10.5ton\;ha^{-1}$) was as much as that of LPM 150% ($10.0ton\;ha^{-1}$). Yield of LPM 200% ($11.2ton\;ha^{-1}$) in Saemangeum was similar to that of LPM 150% ($10.5ton\;ha^{-1}$). Crude protein (CP) increased depending on LPM application level, but total digestible nutrients (TDN) increased regardless of LPM application level. LPM 200% was the highest in TDN yield (Yeongsangang: $7.4ton\;ha^{-1}$, Saemangeum: $6.9ton\;ha^{-1}$), but there was no statistical difference between LPM 150% (Yeongsangang: $6.9ton\;ha^{-1}$, Saemangeum: $6.6ton\;ha^{-1}$) and LPM 200%. From the results described above, optimum rate of LPM for cultivating whole crop barley is considered 100% in Yeongsangang reclaimed tidal land and 150% in Saemangeum reclaimed tidal land, showing that the effect of LPM application is better in Segmentation than that in Yeongsangang for yield of whole crop barley.

Application of Molybdenum Enhances Nitrogen Fixation and Transfer, and Biomass Production under a Hairy Vetch/Barley Mixture Cropping System (풋거름 보리-헤어리베치 혼파 작부체계에서 몰리브덴 시용이 질소 고정, 이동 및 수량에 미치는 영향)

  • Kim, Tae-Young;Kim, Song-Yeob;Yoon, Young Eun;Kim, Jang Hwan;Lee, Yong Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.291-295
    • /
    • 2019
  • BACKGROUND: Mixed cropping of hairy vetch and Barley is widely used as a green manure for reducing chemical fertilizers while maintaining soil fertility in paddy soil. We investigated the effect of Molybdenum (Mo) fertilizer on vetch N2 fixation, biomass production and transfer N from vetch to barley under a hairy vetch-barley mixed cropping system. METHODS AND RESULTS: The barley and hairy vetch were sowed at a rate of 135 and 23 kg/ha, respectively, without chemical fertilizer application but with Mo fertilizer at 0, 0.5, 1.0, 2.0, and 4.0 kg/ha as a treatment. The percentage of hairy vetch N derived from air N2 fixation (%Ndfa) and N transfer from hairy vetch to barley (%Ndfv) was determined by the 15N natural abundance method. Although application of Mo at 2.0 kg/ha significantly increased biomass of both barley and hairy vetch, the biomass was decreased at application of Mo 4.0 kg/ha. At the application of Mo 2.0 kg/ha, the percentage of Ndfa and Ndfv was 81.7 and 53.9, respectively, which are significantly higher than that of the treatments without Mo. CONCLUSION: These results highlight that application of Mo fertilizer can be an effective measures to improve N fixation in hairy vetch and biomass production in both barley and hairy vetch.