• Title/Summary/Keyword: manufacturing uncertainty

Search Result 191, Processing Time 0.027 seconds

An efficient robust cost optimization procedure for rice husk ash concrete mix

  • Moulick, Kalyan K.;Bhattacharjya, Soumya;Ghosh, Saibal K.;Shiuly, Amit
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.433-444
    • /
    • 2019
  • As rice husk ash (RHA) is not produced in controlled manufacturing process like cement, its properties vary significantly even within the same lot. In fact, properties of Rice Husk Ash Based Concrete (RHABC) are largely dictated by uncertainty leading to huge deviations from their expected values. This paper proposes a Robust Cost Optimization (RCO) procedure for RHABC, which minimizes such unwanted deviation due to uncertainty and provides guarantee of achieving desired strength and workability with least possible cost. The RCO simultaneously minimizes cost of RHABC production and its deviation considering feasibility of attaining desired strength and workability in presence of uncertainty. RHA related properties have been modeled as uncertain-but-bounded type as associated probability density function is not available. Metamodeling technique is adopted in this work for generating explicit expressions of constraint functions required for formulation of RCO. In doing so, the Moving Least Squares Method is explored in place of conventional Least Square Method (LSM) to ensure accuracy of the RCO. The efficiency by the proposed MLSM based RCO is validated by experimental studies. The error by the LSM and accuracy by the MLSM predictions are clearly envisaged from the test results. The experimental results show good agreement with the proposed MLSM based RCO predicted mix properties. The present RCO procedure yields RHABC mixes which is almost insensitive to uncertainty (i.e., robust solution) with nominal deviation from experimental mean values. At the same time, desired reliability of satisfying the constraints is achieved with marginal increment in cost.

An Empirical Analysis of the Characteristics of Acquiring Manufacturing Firms in Korea : The Focus on Environmental Factors and Firm Performance (합병한 국내 제조기업들의 특징에 관한 실증적 연구 : 환경적 요인과 기업성과를 중심으로)

  • Lee, Younsuk;Park, Soohoon
    • Korean Management Science Review
    • /
    • v.32 no.2
    • /
    • pp.91-109
    • /
    • 2015
  • The M&A of firms has been emerged as the effective means of fast diversification and growth in dynamic environment. However, the empirical research about M&A in Korea has not been implemented rich due to the difficulty of obtaining M&A data. In this research, we empirically investigate the relationships among M&A, environment and firms' performance focused on Korean manufacturing firms, understanding the current practice of M&A in Korea. We use the Manufacturing Productivity Panel Survey Data, which are collected by Korea Productivity Center in 2013. The sample size is 575 and the sample is divided into M&A group and non-M&A group. We conduct logit analysis with the independent variables of environment factors (munificence, dynamic, uncertainty), and firms' performance (sales growth, ROS, labor productivity and Inventory turnover), and dependent variable of M&A group or non M&A group. The results show that M&A is closely related to environment feature and firm performance: M&A firms are likely to be the higher munificence and dynamic and the lower sales growth and higher profitability than non-M&A group. In addition, we also examine the characteristics of firms by M&A types (competitors, customer/supplier and firms from unrelated industry). These results imply that if firms confront the pressure of uncertainty (dynamic) and the lower growth, they tend to choose M&A. Futhermore, to profoundly understand the behavior of firms about M&A, it is required to classify the M&A firms by merge types.

Derivation of Security Requirements of Smart Factory Based on STRIDE Threat Modeling (STRIDE 위협 모델링에 기반한 스마트팩토리 보안 요구사항 도출)

  • Park, Eun-ju;Kim, Seung-joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1467-1482
    • /
    • 2017
  • Recently, Interests on The Fourth Industrial Revolution has been increased. In the manufacturing sector, the introduction of Smart Factory, which automates and intelligent all stages of manufacturing based on Cyber Physical System (CPS) technology, is spreading. The complexity and uncertainty of smart factories are likely to cause unexpected problems, which can lead to manufacturing process interruptions, malfunctions, and leakage of important information to the enterprise. It is emphasized that there is a need to perform systematic management by analyzing the threats to the Smart Factory. Therefore, this paper systematically identifies the threats using the STRIDE threat modeling technique using the data flow diagram of the overall production process procedure of Smart Factory. Then, using the Attack Tree, we analyze the risks and ultimately derive a checklist. The checklist provides quantitative data that can be used for future safety verification and security guideline production of Smart Factory.

A Measuring Model of Risk Impact on The App Development Project in The Social App Manufacturing Environment (Social App Manufacturing 환경의 앱 개발 프로젝트에서 위험영향도 측정 모델)

  • Baek, Jung Hee;Lim, Young Hwan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.9
    • /
    • pp.335-340
    • /
    • 2014
  • Crowd Sourcing-based Social App Manufacturing environment, a small app development project by a team of anonymous virtual performed without the constraints of time and space, and manage it for the app development process need to be automated method. Virtual teams with anonymity is a feature of the Social App Manufacturing, is an important factor that increases the uncertainty of whether the completion of the project or reduction in visibility of the progress of the project. In this study, as one of how to manage the project of Social App Manufacturing environment, the impact of risk that can be used to quantitatively measure the impact of the risk of delay in development has on the project also proposes a measurement model. Effects of risk and type of the impact of risks associated with delays in the work schedule also define the characteristic function, measurement model that has been proposed, suggest the degree of influence measurement equation of risk of the project in accordance with the progressive. The advantage of this model, the project manager is able to ensure the visibility of the progress of the project. In addition, identify the project risk of work delays, and to take precautions.

Probabilistic Design under Uncertainty using Response Surface Methodology and Pearson System (반응표면방법론과 피어슨 시스템을 이용한 불확실성하의 확률적 설계)

  • Baek Seok-Heum;Cho Soek-Swoo;Joo Won-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.275-282
    • /
    • 2006
  • System algorithms estimated by deterministic input may occur the error between predicted and actual output. Especially, actual system can't predict the exact outputs due to uncertainty and tolernce of input parameters. A single output to a set of inputs has a limited value without the variation. Hence, we should consider various scatters caused by the load assessment, material characteristics, stress analysis and manufacturing methods in order to perform the robust design or etimate the reliability of structure. The system design with uncertainty should perform the probabilistic structural optimization with the statistical response and the reliability. This method calculated the probability distributions of the characteristics such as stress by combining stress analysis, response surface methodology and Monte Carlo simulation and got the probabilistic sensitivity. The sensitivity of structural response with respect to in constant design variables was estimated by fracture probability. Therefore, this paper proposed the probabilistic reliability design method for fracture of uncorved freight end beam and the design criteria by fracture probability.

  • PDF

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante;Tomicevic, Zvonimir;Bubalo, Ante;Hild, Francois
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.15-32
    • /
    • 2022
  • The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

A Study on Measurement Uncertainty of 3-dimensional Coordinate Measuring Machine used for Inspection of Precision Machined parts (정밀가공 부품 검사에 사용되는 3차원측정기의 측정불확도 연구)

  • Lee Gab Jo;Oh Sang Lok;Kim Jong Kwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.55-61
    • /
    • 2005
  • The machining Parts must be Produced within the specification of drawing and those will be able to meet faction and efficiency. At that time, it is very important not only precision machine and machining technique but also the measurement technique. So, the improvement of measurement technique is to be joined together at once with improvement of machining technique. Finally, the quality and value of the parts are decided by precision measurement. This paper aims to study on the measurement uncertainty when the machined parts are inspected with 3-dimensional coordinate measuring machine. The objectives remove an error of measurement and remove a quality of mass products.

Estimation of Output Derivative of The System with Parameters Uncertainty (매개변수 불확실성이 있는 시스템의 출력미분치 추정)

  • 김유승;양호석;이건복
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.543-550
    • /
    • 2002
  • This work is concerned with the estimation of output derivatives and their use for the design of robust controller for linear systems with systems uncertainties due to modeling errors and disturbance. It is assumed that a nominal transfer function model and Quantitative bounds for system uncertainties are known. The developed control schemes are shown to achieve regulation of the system output and ensures boundedness of the system states without imposing any structural conditions on system uncertainties and disturbances. Output derivative estimation is first conducted trough restructuring of the plant in a specific parameterization. They are utilized for constructing robust nonlinear high-gain feedback controller of a SMC(Sliding Mode Controller) Type. The performances of the developed controller are evaluated and shown to be effective and useful through simulation study.

  • PDF

Robust Optimization of a Lens System for a Mobile Phone Camera (휴대폰 카메라용 렌즈 시스템의 강건최적설계)

  • Jung, Sang-Jin;Min, Jun-Hong;Choi, Dong-Hoon;Kim, Ju-Ho
    • Korean Journal of Computational Design and Engineering
    • /
    • v.15 no.5
    • /
    • pp.325-332
    • /
    • 2010
  • A lens system for mobile phone cameras is comprised of various lenses and designed so as to satisfy design requirements for responses such as a modular transfer function (MTF). However, it is difficult to manufacture and assemble camera modules to maintain the same performance compared with the designed camera modules, because of uncertainty. We should always design a lens system by considering uncertainty that can be caused by errors in the manufacturing and assembly process of mobile phone cameras. The robust optimization offers tools of making robust decisions with the consideration of design parameters, uncontrollable parameters, and the variance of the system. Using an efficient reliability analysis method and an optimization algorithm, we obtained robust optimization results that maximize the mean of MTF and minimize the standard deviation and proposed a new robust design process for a lens system.

Precision Nanometrology and its Applications to Precision Nanosystems

  • Gao Wei
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.14-20
    • /
    • 2005
  • In this paper, a new field of metrology called 'precision nanometrology' is presented. The 'precision nanometrology' is the result of evolutions of the traditional 'precision metrology' and the new 'nanometrology'. 'Precision nanometrology' is defined here as the science of dimensional measurement and motion measurement with 100 nm to 0.1 nm resolution/uncertainty within a range of micrometer to meter. The definition is based on the fact that nanometrology in nanoengineering and the precision industries, such as semiconductor industry, precision machine tool industry, precision instrument industry, is not only concerned with the measurement resolution and/or uncertainty but also the range of measurement. It should also be pointed out that most of the measurement objects in nanoengineering have dimensions larger than 1 micrometer. After explaining the definition of precision nanometrology, the paper provides several examples showing the critical roles of precision nanometrology in precision nanosystems, including nanometrology system, nanofabrication system, and nanomechatronics system.