DOI QR코드

DOI QR Code

Assessment of DVC measurement uncertainty on GFRPs with various fiber architectures

  • Bartulovic, Ante (NETEC - Institute for Nuclear Technology) ;
  • Tomicevic, Zvonimir (Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb) ;
  • Bubalo, Ante (Yazaki Europe Limited) ;
  • Hild, Francois (Universite Paris-Saclay, CentraleSupelec, ENS Paris-Saclay, CNRS, LMPS - Laboratoire de Mecanique)
  • Received : 2021.07.31
  • Accepted : 2021.10.11
  • Published : 2022.02.25

Abstract

The comprehensive understanding of the fiber reinforced polymer behavior requires the use of advanced non-destructive testing methods due to its heterogeneous microstructure and anisotropic mechanical proprieties. In addition, the material response under load is strongly associated with manufacturing defects (e.g., voids, inclusions, fiber misalignment, debonds, improper cure and delamination). Such imperfections and microstructures induce various damage mechanisms arising at different scales before macrocracks are formed. The origin of damage phenomena can only be fully understood with the access to underlying microstructural features. This makes X-ray Computed Tomography an appropriate imaging tool to capture changes in the bulk of fibrous materials. Moreover, Digital Volume Correlation (DVC) can be used to measure kinematic fields induced by various loading histories. The correlation technique relies on image contrast induced by microstructures. Fibrous composites can be reinforced by different fiber architectures that may lead to poor natural contrast. Hence, a priori analyses need to be performed to assess the corresponding DVC measurement uncertainties. This study aimed to evaluate measurement resolutions of global and regularized DVC for glass fiber reinforced polymers with different fiber architectures. The measurement uncertainties were evaluated with respect to element size and regularization lengths. Even though FE-based DVC could not reach the recommended displacement uncertainty with low spatial resolution, regularized DVC enabled for the use of fine meshes when applying appropriate regularization.

Keywords

Acknowledgement

This work was conducted within the FULLINSPECT project supported by the Croatian Science Foundation (UIP-2019-04-5460 Grant).

References

  1. Agyei, R.F., Hanhan, I. and Sangid, M.D. (2020), "Detecting damage initiation in short fiber composites via in-situ X-ray tomography and digital volume correlation", Compos. Commun., 22, 100524. https://doi.org/10.1016/j.coco.2020.100524.
  2. Arif, M.F., Saintier, N., Meraghni, F., Fitoussi, J., Chemisky, Y. and Robert, G. (2014) "Multiscale fatigue damage characterization in short glass fiber reinforced polyamide-66", Compos. Part B Eng., 61, 55-65. https://doi.org/10.1016/j.compositesb.2014.01.019.
  3. Bay, B.K., Smith, T.S., Fyhrie, D.P. and Saad, M. (1999), "Digital volume correlation: Three-dimensional strain mapping using X-ray tomography", Exp. Mech., 39, 217-226. https://doi.org/10.1007/BF02323555.
  4. Benoit, A., Guerard, S., Gillet, B., Guillot, G., Hild, F., Mitton, D., Perie, J.N. and Roux, S. (2009), "3D analysis from micro-MRI during in situ compression on cancellous bone", J. Biomech., 42(14), 2381-2386. https://doi.org/10.1016/j.jbiomech.2009.06.034.
  5. Besnard, G., Hild, F. and Roux, S. (2006), ""Finite-Element" displacement fields analysis from digital images: Application to Portevin-Le Chatelier bands", Exp. Mech., 46, 789-803. https://doi.org/10.1007/s11340-006-9824-8.
  6. Brynk, T., Molak, R.M., Janiszewska, M. and Pakiela, Z. (2012), "Digital image correlation measurements as a tool of composites deformation description", Comput. Mater. Sci., 64, 157-161. https://doi.org/10.1016/j.commatsci.2012.04.034.
  7. Buljac, A., Jailin, C., Mendoza, A., Neggers, J., Taillandier-Thomas, T., Bouterf, A., Smaniotto, B., Hild, F. and Roux, S. (2018a), "Digital volume correlation: review of progress and challenges", Exp. Mech., 58, 661-708. https://doi.org/10.1007/s11340-018-0390-7.
  8. Buljac, A., Trejo Navas, V.M., Shakoor, M., Bouterf, A., Neggers, J., Bernacki, M., Bouchard, P.O., Morgeneyer, T.F. and Hild, F. (2018b), "On the calibration of elastoplastic parameters at the microscale via X-ray microtomography and digital volume correlation for the simulation of ductile damage", Eur. J. Mech. A Solid., 72, 287-297. https://doi.org/10.1016/j.euromechsol.2018.04.010.
  9. Buljac, A., Taillandier-Thomas, T., Helfen, L., Morgeneyer, T.F. and Hild, F. (2018c), "Evaluation of measurement uncertainties of digital volume correlation applied to laminography data", J. Strain Anal. Eng. Des., 53(2), 49-65. https://doi.org/10.1177/0309324717748097.
  10. Chambers, A.R., Earl, J.S., Squires, C.A. and Suhot, M.A. (2006), "The effect of voids on the flexural fatigue performance of unidirectional carbon fibre composites developed for wind turbine applications", Int. J. Fatig., 28(10), 1389-1398. https://doi.org/10.1016/j.ijfatigue.2006.02.033.
  11. Chu, T.C., Ranson, W.F. and Sutton, M.A. (1985), "Applications of digital-image-correlation techniques to experimental mechanics", Exp. Mech., 25, 232-244. https://doi.org/10.1007/BF02325092.
  12. Croom, B.P., Burden, D., Jin, H., Vonk, N.H., Hoefnagels, J.P.M., Smaniotto, B., Hild, F., Quintana, E., Sun, Q., Nie, X. and Li, X. (2021), "Interlaboratory study of digital volume correlation error due to x-ray computed tomography equipment and scan parameters: An update from the DVC challenge", Exp. Mech., 61, 395-410. https://doi.org/10.1007/s11340-020-00653-x.
  13. Davis, G.R. and Elliott, J.C. (2006), "Artefacts in X-ray microtomography of materials", Mater. Sci. Technol., 22(9), 1011-1018. https://doi.org/10.1179/174328406X114117.
  14. Duchene, P., Chaki, S., Ayadi, A. and Krawczak P. (2018), "A review of non-destructive techniques used for mechanical damage assessment in polymer composites", J. Mater. Sci., 53, 7915-7938. https://doi.org/10.1007/s10853-018-2045-6.
  15. Garcea, S.C., Sinclair, I. and Spearing, S.M. (2015), "In situ synchrotron tomographic evaluation of the effect of toughening strategies on fatigue micromechanisms in carbon fibre reinforced polymers", Compos. Sci. Technol., 109, 32-39. https://doi.org/10.1016/j.compscitech.2015.01.012.
  16. Garcea, S.C., Wang, Y. and Withers, P.J. (2018), "X-ray computed tomography of polymer composites", Compos. Sci. Technol., 156, 305-319. https://doi.org/10.1016/j.compscitech.2017.10.023.
  17. Geuzaine, C. and Remacle, J.F. (2009), "Gmsh: a three-dimensional finite element mesh generator with built-in pre- and post-processing facilities", Int. J. Numer. Meth. Eng., 79(11), 1309-1331. https://doi.org/10.1002/nme.2579.
  18. Gras, R., Leclerc, H., Hild, F., Roux, S. and Schneider, J. (2015), "Identification of a set of macroscopic elastic parameters in a 3D woven composite: Uncertainty analysis and regularization", Int. J. Solid. Struct., 55, 2-16. https://doi.org/10.1016/j.ijsolstr.2013.12.023.
  19. Hild, F. and Roux, S. (2012), "Comparison of local and global approaches to digital image correlation", Exp. Mech., 52, 1503-1519. https://doi.org/10.1007/s11340-012-9603-7.
  20. Hild, F., Bouterf, A. and Roux, S. (2015), "Damage measurements via DIC", Int. J. Fract., 191, 77-105. https://doi.org/10.1007/s10704-015-0004-7.
  21. Hild, F., Bouterf, A., Chamoin, L., Leclerc, H., Mathieu, F., Neggers, J., Pled, F., Tomicevic, Z. and Roux, S. (2016), "Toward 4D mechanical correlation", Adv. Model. Simul. Eng. Sci., 3(17), 1-26. https://doi.org/10.1186/s40323-016-0070-z.
  22. Leclerc, H., Neggers, J., Mathieu, F., Hild, F. and Roux, S. (2015), Correli 3.0, Agence pour la Protection des Programmes, IDDN.FR.001.520008.000.S.P.2015.0.0.0.31500.
  23. Leclerc, H., Perie, J., Hild, F. and Roux, S. (2012), "Digital volume correlation: What are the limits to the spatial resolution?", Mech. Ind., 13(6), 361-371. https://doi.org/10.1051/meca/2012025.
  24. Leclerc, H., Perie, J.N, Roux, S. and Hild, F. (2011), "Voxel-scale digital volume correlation", Exp. Mech., 51(4), 479-490. https://doi.org/10.1007/s11340-010-9407-6.
  25. Lecompte, D., Smits, A., Sol, H., Vantomme, J. and Van Hemelrijck, D. (2007), "Mixed numerical-experimental technique for orthotropic parameter identification using biaxial tensile tests on cruciform specimens", Int. J. Solid. Struct., 44(5), 1643-1656, https://doi.org/10.1016/j.ijsolstr.2006.06.050.
  26. Lee, S., Jo, E. and Ji, W. (2020), "Digital volume correlation technique for characterizing subsurface deformation behavior of a laminated composite", Compos. Part B Eng., 194, 108052. https://doi.org/10.1016/j.compositesb.2020.108052.
  27. Mahadik, Y., Brown, K.R. and Hallett, S.R. (2010), "Characterization of 3D woven composite internal architecture and effect of compaction", Compos. Part A Appl. Sci. Manuf., 41(7), 872-880. https://doi.org/10.1016/j.compositesa.2010.02.019.
  28. Mendoza, A., Neggers, J., Hild, F. and Roux, S. (2019), "Complete mechanical regularization applied to digital image and volume correlation", Comput. Meth. Appl. Mech. Eng., 355, 27-43/https://doi.org/10.1016/j.cma.2019.06.005.
  29. Perie, J.N., Calloch, S., Cluzel, C. and Hild, F. (2002), "Analysis of a multiaxial test on a C/C composite by using digital image correlation and a damage model", Exp. Mech., 42, 318-328. https://doi.org/10.1007/BF02410989.
  30. Rannou, J., Limodin, N., Rethore, J., Gravouil, A., Ludwig, W., Baietto-Dubourg, M.C., Buffiere, J.Y., Combescure, A., Hild, F. and Roux, S. (2010), "Three dimensional experimental and numerical multiscale analysis of a fatigue crack", Comput. Meth. Appl. Mech. Eng., 199(21-22), 1307-1325. https://doi.org/10.1016/j.cma.2009.09.013.
  31. Rashidi, A., Olfatbakhsh, T., Crawford, B. and Milani, A.S. (2020). "A review of current challenges and case study toward optimizing micro-computed X-Ray tomography of carbon fabric composites", Mater., 13(16), 3606. https://doi.org/10.3390/ma13163606.
  32. Ray, B.C., Hasan, S.T. and Clegg, D.W. (2007), "Evaluation of defects in FRP composites by NDT techniques", J. Reinf. Plast. Compos., 26(12), 1187-1192. https://doi.org/10.1177/0731684407079348.
  33. Rolland, H., Saintier, N. and Robert, G. (2016), "Damage mechanisms in short glass fibre reinforced thermoplastic during in situ microtomography tensile tests", Compos. Part B Eng., 90, 365-377. https://doi.org/10.1016/j.compositesb.2015.12.021.
  34. Roux, S., Hild, F., Viot, P. and Bernard, D. (2008), "Three-dimensional image correlation from X-ray computed tomography of solid foam", Compos. Part A Appl. Sci. Manuf., 39, 1253-1265. https://doi.org/10.1016/j.compositesa.2007.11.011.
  35. Schoberl, E., Breite, C., Melnikov, A., Swolfs, Y., Mavrogordato, M.N., Sinclair, I. and Spearing, S.M. (2020), "Fibre-direction strain measurement in a composite ply under quasi-static tensile loading using Digital Volume Correlation and in situ Synchrotron Radiation Computed Tomography", Compos. Part A Appl. Sci. Manuf., 137, 105935. https://doi.org/10.1016/j.compositesa.2020.105935.
  36. Scott, A.E., Mavrogordato, M., Wright, P., Sinclair, I. and Spearing, S.M. (2011), "In situ fibre fracture measurement in carbon-epoxy laminates using high resolution computed tomography", Compos. Sci. Technol., 71(12), 1471-1477. https://doi.org/10.1016/j.compscitech.2011.06.004.
  37. Tekieli, M., Santis, S.D., Felice, G.D., Kwiecien, A. and Roscini, F. (2017), "Application of Digital Image Correlation to composite reinforcements testing", Compos. Struct., 160, 670-688. https://doi.org/10.1016/j.compstruct.2016.10.096.
  38. Tomicevic, Z., Hild, F. and Roux, S. (2013), "Mechanics-aided digital image correlation", J. Strain Anal. Eng. Des., 48(5), 330-343. https://doi.org/10.1177/0309324713482457.
  39. Tran, A.P., Yan, S. and Fang, Q. (2020), "Improving model-based functional near-infrared spectroscopy analysis using mesh-based anatomical and light-transport models", Neurophotonic., 7(1), 015008. https://doi.org/10.1117/1.NPh.7.1.015008.
  40. Vrgoc, A., Tomicevic, Z., Smaniotto, B. and Hild, F. (2021a), "Application of different imaging techniques for the characterization of damage in fiber reinforced polymer", Compos. Part A Appl. Sci. Manuf., 150, 106576. https://doi.org/10.1016/j.compositesa.2021.106576.
  41. Vrgoc, A., Tomicevic, Z., Zaplatic, A. and Hild, F. (2021b), "Damage analysis in glass fibre reinforced epoxy resin via digital image correlation", Trans. Famena, 45(2), 1-12. https://doi.org/10.21278/TOF.452024020.
  42. Wang, B., Zhong, S., Lee, T.L., Fancey, K.S. and Mi, J. (2020), "Non-destructive testing and evaluation of composite materials/structures: A state-of-the-art review", Adv. Mech. Eng., 12(4), 1-28. https://doi.org/10.1177/1687814020913761.