• 제목/요약/키워드: manufacturing methods

Search Result 2,774, Processing Time 0.025 seconds

Introduction and Feasibility on a New Technology for the Pipe Wall Thinning Evaluation of Nuclear Power Plants (원전 배관감육 평가를 위한 새로운 기법의 도입 및 타당성)

  • Hwang, Kyeong Mo;Yun, Hun;Park, Hyun Cheol
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2014
  • A huge number of carbon steel piping components installed in the secondary system of nuclear power plants are exposed to aging mechanisms such as FAC (Flow-Accelerated Corrosion), Cavitation, Flashing, and LDIE (Liquid Droplet Impingement Erosion). Those aging mechanisms can lead to thinning of the piping components. To manage the wall thinning degradation, most of utilities in the world predict the wall thinning rate based on the computational program such as CHECWORKS, COMSY, and BRT-CICERO, evaluate the UT (Ultrasonic Test) data, and determine next inspection timing, repair or replacement, if needed. There are several evaluation methods, such as band, blanket, and strip methods, commonly used for determining the wear of piping components from single UT inspection data. It has been identified that those single UT evaluation methods not only do not consider the manufacturing features of pipes, but also may exclude the data of the most thinned point when determining the representative wear rate of piping components. This paper describes a newly developed single UT evaluation method, E-Cross method, for solving above problems and introduces application examples for several pipes and elbows. It was identified that the E-Cross method using the length and width of UT data excluded the most thinned points appropriate as the single UT evaluation method for thinned piping components.

Measuring Methods for Two-dimensional Position Referring to the Target Pattern (참조패턴 기반의 2차원 변위 측정 방법론)

  • Jung, Kwang Suk;Lee, Sang Heon;Park, Sung-Jun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.1
    • /
    • pp.77-84
    • /
    • 2013
  • In this paper, we review two-dimensional measuring methods referring to target patterns. The patterns consist of two linearly-repeated patterns or is designed repeatedly in two-dimension. The repeated properties are reflectivity, refractivity, air-gapping distance, capacitance, magnetic reluctance, electrical resistance and sloping gradient, etc. However, the optical methods are generally used for high speed processing and density, and their encoding principles are treated here. In case of two-dimensional pattern, as there is not inherently error between single units encoding the pattern except for the metrology frame errors, the end-effector position of an object accompanying the pattern can be measured with respect of the global frame without via error. Therefore, it is regarded as a substitute for laser interferometer with severe environmental constraints and has been applied to the high-accurate planar actuator.

Novel Methods for Spatial Position Control of a Plate In the Conductive Plate Conveyance System Using Magnet Wheels (자기차륜을 이용한 전도성 평판 이송 시스템에서 평판 위치 제어를 위한 새로운 방법)

  • Jung, Kwang Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.1010-1017
    • /
    • 2013
  • Two-axial electrodynamic forces generated on a conductive plate by a partially shielded magnet wheel are strongly coupled through the rotational speed of the wheel. To control the spatial position of the plate using magnet wheels, the forces should be handled independently. Thus, three methods are proposed in this paper. First, considering that a relative ratio between two forces is independent of the length of the air-gap from the top of the wheel, it is possible to indirectly control the in-plane position of the plate using only the normal forces. In doing so, the control inputs for in-plane motion are converted into the target positions for out-of-plane motion. Second, the tangential direction of the open area of the shield plate and the rotational speed of the wheel become the new control variables. Third, the absolute magnitude of the open area is varied, instead of rotating the open area. The forces are determined simply by using a linear controller, and the relative ratio between the forces creates a unique wheel speed. The above methods were verified experimentally.

A Study on the Thermal Characteristics of LPG and Hydrox Gas Cutting (Hydrox Gas 절단과 LPG 절단의 열적특성에 관한 연구)

  • Kim, Hong-Gun;Kwac, Lee-Ku
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.2
    • /
    • pp.301-305
    • /
    • 2010
  • Cutting procedures where qualities are determined by various demand factors largely influences shipbuilding productivity. Particularly, defects in cutting shapes and cutting surface results in delay for post shipbuilding stages such as in welding and assemblage lines which could become factors for reduced economic viability of the project. Existing cutting procedures utilize fossil fuels such as propane or ethylene as the main fuel component and these methods applied particularly to ship plate cutting gives relatively slow cutting speed and generates large quantities of harmful and sometimes poisonous polluting fumes of which warrants an urgent need to look for alternative cutting methods. Recent introduction of hydrox gas generated by electrically dissociating water into hydrogen and oxygen components to be utilize as an alternative cutting fuel has resulted not just in visible improvement on cutting quality and speed over the existing methods but it has also been welcomed as an environmentally friendly clean fuel source. This paper has been prepared to serve as the basis for accommodating this environmentally friendly hydrox gas cutting method into actual working environment by observing and recording hydrox gas cutting thermal characteristics.

Reproduction a Loop-handled Sword from Suchon-ri Site During the Baekje Kingdom (백제시대 수촌리유적 출토 환두대도의 복원제작)

  • Chung, Kwang-yong;Lee, Hyun-sang
    • 보존과학연구
    • /
    • s.27
    • /
    • pp.83-102
    • /
    • 2006
  • The Suchon-ri tomb No. 1 is the earliest one among the Suchon-ri tombs excavated in 2003. The Suchon-ri tomb No. 1 yielded a number of valuable artifacts furnished with burial goods such as gilt bronze items of a crown, a pair of earrings and shoes and a loop-handled sword with inlaid silver decoration. In particular, a loop-handled sword drew scholarly attention in that it showed characteristics of Baekje such as wave patterns on a silver plate decorated in the handle and sheath and inlaid dragon design on the loop-handle. In the process of the reproducing the loop-handled sword, classification methods of the loop-handled swords, iconography decorated on the swords, unearthed loop-handled swords of the Three Kingdoms Period have been investigated along with studying the reproduction cases in Japan. In addition to the study focused on the shape of the swords, manufacturing techniques have been thoroughly analyzed through scientific methods. Finally, based on the synthesis of a series of studies and analyses, traditional manufacturing techniques employed by Baekje artisans had been inferred and a replica of the loop-handled sword was manufactured with the traditional methods.

  • PDF

Effect of Stress Ratio on Fatigue Crack Propagation Processing of Structural Steel (구조용강의 용접가공에 따른 피로균열진전에 미치는 응력비의 영향)

  • Park, Kyeong-Dong;Shin, Yeong-Jin;Lee, Ju-Yeong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.65-71
    • /
    • 2006
  • The lightness of components required on marine and shipbuilding industry is requiring high strength of components. In particular, fatigue failure phenomena, which happen in metal, bring on danger in human life and property. Therefore, antifatigue failure technology takes an important part on current industries. In this study, it is investigated about endurance and fatigue crack propagation rate of according to welding methods such as SMAW, FCAW and SAW commonly used for welding structures in present. Endurance limits carried out highly in the order of SMAW, FCAW, SAW and fatigue crack propagation rate out lowly in the order of SMAW, FCAW, SAW. By these results, it is needed to use SMAW welding method for welding structures with small welding capacity and FCAW, SAW methods for large welding structures after consideration about economic gains and operation efficiency of welding. Fatigue crack propagation rate is more affected by strength of welding materials than endurance limit of welding materials according to welding methods.

  • PDF

A Study on the Fabrication of 3D Scaffolds Using the Solid Freeform Method (임의 형상 제작 기법을 이용한 3차원 세포지지체 제작에 관한 연구)

  • Choi, Do-Hyun;Kim, Hyun-Chul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.2
    • /
    • pp.44-51
    • /
    • 2019
  • With the goal of tissue regeneration for organs damaged through an accident or a disease, research on tissue engineering has been conducted to produce 3-D scaffolds that can support the cells in the attachment and growth for the cell proliferation and differentiation. A scaffold requires a suitable pore size and porosity to increase the nutrient circulation or oxygen supply for the attachment and growth of cells. The existing production methods such as solvent-casting particulate leaching, phase separation, and fiber bonding have certain disadvantages. With these methods, it is difficult to obtain a free desired shape. In addition, certain pore sizes and interconnectivities among the pores may not be guaranteed. To solve these problems, this study has fabricated a scaffold with a 3-D shaped nose using Alginate, which is a natural polymer obtained through Fused Deposition Modeling (FDM), one of the CAD/CAM-based Solid Freeform Fabrication (SFF) methods.

Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods (DLP, FDM 3D 프린팅 출력 방식에 따른 치수 특성에 관한 연구)

  • Jung, Myung-Hwi;Kong, Jeong-Ri;Kim, Hae-Ji
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.1
    • /
    • pp.66-73
    • /
    • 2021
  • In this paper, we analyzed and considered the precision of parts produced by 3D printing methods. For the latch systems applied to the Wingline folding doors, the 3D shape of the door hinge part was printed using FDM and DLP methods. Then, the 3D printed shape was scanned to measure the dimensions and dimensional changes of the actual model. In the comparison and analysis of the 3D printed door hinge parts, because the output filling density is 100% owing to the characteristics of DLP 3D printing, the filling density in FDM 3D printing was also set to 100%.

Dynamic stability and structural improvement of vibrating electrically curved composite screen subjected to spherical impactor: Finite element and analytical methods

  • Xiao, Caiyuan;Zhang, Guiju
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.533-552
    • /
    • 2022
  • The current article deals with the dynamic stability, and structural improvement of vibrating electrically curved screen on the viscoelastic substrate. By considering optimum value for radius curvature of the electrically curved screen, the structure improvement of the system occurs. For modeling the electrically system, the Maxwell's' equation is developed. Hertz contact model in employed to obtain contact forces between impactor and structure. Moreover, variational methods and nonlinear von Kármán model are used to derive boundary conditions (BCs) and nonlinear governing equations of the vibrating electrically curved screen. Galerkin and Multiple scales solution approach are coupled to solve the nonlinear set of governing equations of the vibrating electrically curved screen. Along with the analytical solution, 3D finite element simulation via ABAQUS package is provided with the aid of a FE package for simulating the current system's response. The results are categorized in 3 different sections. First, effects of geometrical and material parameters on the vibrational performance and stability of the curves panel. Second, physical properties of the impactor are taken in to account and their effect on the absorbed energy and velocity profile of the impactor are presented. Finally, effect of the radius and initial velocity on the mode shapes of the current structure is demonstrated.

Analysis Mechanism of Roll Forming Manufacturing Process using HIP (Hot Isostatic Press) Process (HIP(열간 등방압) 공정을 이용한 압연 롤 제조 공정의 해석 메커니즘)

  • W. Kim
    • Transactions of Materials Processing
    • /
    • v.32 no.3
    • /
    • pp.114-121
    • /
    • 2023
  • During rolling, rolling mill rolls endure wear when shaping metal billets into a desired form, such as bars, plates, and shapes. Such wear affects the lifespan of the rolls and product quality. Therefore, in addition to rigidity, wear performance is a key factor influencing the performance of rolling mill rolls. Conventional methods such as casting and forging have been used to manufacture rolling mill rolls. However, powder alloying methods are increasingly being adopted to enhance wear resistance. These powder manufacturing methods include atomization, canning to shape the powder, hot isostatic pressing to combine the powder alloy with conventional metals, and various wear performance tests on rolls prepared with powder alloys. In this study, numerical simulations and experimental tests were used to develop and elucidate the wear analysis mechanism of rolling mill rolls. The wear characteristics of the rolls under various rolling conditions were analyzed. In addition, experimental tests (wear and surface analysis tests) and wear theory (Archard wear model) were used to evaluate wear. These tests were performed on two different materials in various powder states to evaluate the different aspects of wear resistance. In particular, this study identifies the factors influencing the wear behavior of rolling mill rolls and proposes an analytical approach based on the actual production of products. The developed wear analysis mechanism can serve the future development of rolls with high wear resistance using new materials. Moreover, it can be applied in the mechanical and wear performance testing of new products.