• Title/Summary/Keyword: manufacturing method

Search Result 7,250, Processing Time 0.032 seconds

Double Electro-Magnetic Force Compensation Method for the Micro Force Measurement (미소 힘 측정을 위한 이중 전자기힘 보상방법)

  • 최임묵;우삼용;김부식;김수현
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.104-111
    • /
    • 2003
  • Micro force measurement is required more frequently for a precision manufacturing and investment in fields of precision industries such as semiconductor, chemistry and biology, and so forth. Null balance method has been introduced as an alternative of a loadcell. Loadcells have advantages in aspects of low cost and easy manufacturing, but have also the limitation in resolution and sensitivity to environment variations. In this paper, null balance method is explained and the dominant parameters related to system performances are mentioned. Null position sensor, electromagnetic system and controller are investigated. Also, the characteristic experiment is carried out in order to estimate the resolution and the measurement range. In order to overcome the limitation by the drift of position sensor and the performance of controller, double electromagnetic force compensation method is proposed and experimented. After controlling and filtering, the resolution under $\pm$ 1mg and measurement range over 300g could be obtained.

Prediction Fracture Strength on Adhesively Bonded scarf Joints in Dissimilar Materials (이종재료의 경사접착이음에 대한 파괴강도의 예측)

  • 정남용
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.4 no.4
    • /
    • pp.50-60
    • /
    • 1995
  • Recently advantages joining dissimiliar materials and light weight material techniques have led to increasing use of structural adhesives in the various industries. Stress singulartiy occurs at the interface edges of adhesively bonded dissimilar materials. So it is required to analyze its stress singularity at the interface edges of adhesively bonded joints indissimilar materials. In this paper, the analysis method of stress singularity is studied in detail. Also, effects of the stress singularity at the interface edge of adhesively bonded scarf joints in combinations of dissimilar materials are investigated by using 2-dimensional elastic program of boundary element method. As the results, the strength evaluation method of adhesively bonded dissimilar materials using the stress singularity factor, $\Gamma$,is very useful. The fracture criterion, method of strength evaluation and prediction of fracture strength by the stress singularity factor on the adhesively bonded dissimilar materials are proposed.

  • PDF

A Study for the Roundness Estimation (진원도 형상 추정 연구)

  • Kim, Soo-Kwang;Jun, Jae-Uhk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.38-45
    • /
    • 2011
  • The criteria for determining the elements are the minimum zone method(MZM) and the least squares method(LSM). The LSM is deterministic and simple but is limited at the measurements whose errors are significant compared with form errors. For the precise condition, minimum zone method(MZM) has been selected to determine the elements. The roundness is the fundamental problem in the evaluating form errors. In this paper, anew approach adapting the genius education concept is proposed to obtain an accurate results for the MZM and the LSM of the roundness. Its computational algorithm is studied on a set of measured sample data. To be of almost no account of the specification(the number and the standard deviation etc.) of the sanple data, the results shoqs excellent reliability and high accuracy in estimating the roundness.

Development of Aspheric Surface Profilometry using 2nd Derivative (형상의 이차미분을 이용한 비구면 형상측정기술 개발)

  • Kim, Byoung-Chang
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.2
    • /
    • pp.104-109
    • /
    • 2011
  • I present a method of aspheric surface profile measurement using 2nd derivative of local area profile. This method is based on the principle of curvature sensor which measures the local 2nd derivative under test along a line. The profile is then reconstructed from the data on the each point. Unlike subaperture-stiching method and slope detection method, 2nd derivative method has strong points from a geometric point of view in measuring the aspheric surface profile. The second derivative terms of surface profile is an intrinsic property of the test piece, which is independent of its position and tip-tilt motion. The curvature is measured at every local area with high accuracy and high lateral resolution by using White-light scanning interferometry.

Analysis of Bulk Metal Forming Process by Reproducing Kernel Particle Method (재생커널입자법을 이용한 체적성형공정의 해석)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.3
    • /
    • pp.21-26
    • /
    • 2009
  • The finite element analysis of metal forming processes often fails because of severe mesh distortion at large deformation. As the concept of meshless methods, only nodal point data are used for modeling and solving. As the main feature of these methods, the domain of the problem is represented by a set of nodes, and a finite element mesh is unnecessary. This computational methods reduces time-consuming model generation and refinement effort. It provides a higher rate of convergence than the conventional finite element methods. The displacement shape functions are constructed by the reproducing kernel approximation that satisfies consistency conditions. In this research, A meshless method approach based on the reproducing kernel particle method (RKPM) is applied with metal forming analysis. Numerical examples are analyzed to verify the performance of meshless method for metal forming analysis.

  • PDF

Determination of Optimal Cutting Conditions in Milling Process using Multiple Design of Experiments Technique (밀링 가공 공정에서 복합실험계획법을 이용한 최적 절삭조건 결정)

  • Kim, Yong-Sun;Kwon, Won-Tae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.232-238
    • /
    • 2011
  • In the present study, Taguchi method is used to determine the rough region first, followed by RSM technique to determine the exact optimum value during milling on a machining center. A region reducing algorithm is applied to narrow down the region of the Taguchi method for RSM. The result from the Taguchi method is fed to train the artificial neural network (ANN), whose optimum value is used to drive the region reducing algorithm. The proposed algorithm is tested under different cutting condition and results show that the introduced algorithm works well during milling process. It is also shown that theoretically obtained optimal cutting condition is very close to experimentally obtained result.

Motion Planning of an Autonomous Mobile Robot in Flexible Manufacturing Systems

  • Kim, Yoo-Seok-;Lee, Jang-Gyu-
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1254-1257
    • /
    • 1993
  • Presented in this paper is a newly developed motion planning method of an autonomous mobile robot(MAR) which can be applied to flexible manufacturing systems(FMS). The mobile robot is designed for transporting tools and workpieces between a set-up station and machines according to production schedules of the whole FMS. The proposed method is implemented based on an earlier developed real-time obstacle avoidance method which employs Kohonen network for pattern classification of sonar readings and fuzzy logic for local path planning. Particulary, a novel obstacle avoidance method for moving objects using a collision index, collision possibility measure, is described. Our method has been tested on the SNU mobile robot. The experimental results show that the robot successfully navigates to its target while avoiding moving objects.

  • PDF

Prediction of Radial Direction Strain in Drawn Wire (인발 선재의 반경 방향 변형률 분포 예측)

  • Lee, Sang-Kon;Hwang, Sun-Kwang;Cho, Yong-Jae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.9
    • /
    • pp.100-105
    • /
    • 2019
  • In wire drawing, aterial deformation is concentrated on the surface of the drawn wire because of surface contact with the drawing die. Therefore, strain varies from the center to the surface of the drawn wire. In this study, based on the upper bound method, an effective strain prediction method from the center to the surface of a drawn wire was proposed. Using the proposed method, the effective strain of the drawn wire was calculated verify the proposed prediction method, the predicted effective strain was compared with the result of finite element analysis.

Introduction of Prediction Method of Welding Deformation by Using Laminated Beam Modeling Theory and Its Application to Railway Rolling Stock

  • Mun, Hyung-Suk;Jang, Chang-Doo
    • International Journal of Railway
    • /
    • v.2 no.4
    • /
    • pp.175-179
    • /
    • 2009
  • The welding deformation and its prediction method at the HAZ (Heat-Affected Zone) are presented in this paper. The inherent strain method is well known as analytical method to predict welding deformation of large scale welded structure. Depend on the size of welding deformation in welding joints, the fatigue life, the stress concentration factor and the manufacturing quality of welded structure are decided. Many welded joints and its manufacturing control techniques are also required to railway rolling stock and its structural parts such as railway carbody and bogie frame. Proposed methods in this paper focus on the two different the inherent strain area at HAZ. This is main idea of proposed method and it makes more reliable result of welding deformation analysis at the HAZ.

  • PDF

Analysis of Quartz Concentrations by FTIR-DOF and FTIR-Transfer method in Concrete Manufacturing Industries (콘크리트 취급사업장의 공기 중 석영 분석방법 비교)

  • Bae, Hye Jeong;Jung, Jong-Hyeon;Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.2
    • /
    • pp.75-83
    • /
    • 2013
  • Objectives: This study was conducted to estimate quartz concentrations in the airborne respirable dust from concrete manufacturing industries and to compare performance of two analytical methods, direct on filter(DOF) and the transfer methods in the Fourier Transform Infrared Spectroscopy(FTIR). Methods: Total 36 area samples were collected from 8 concrete manufacturing industries. Each respirable dust sample was collected by a 25 mm cassette attached to a 10 mm Dorr-Oliver nylon cyclone. The quartz content was estimated using the intensity of the absorption peak of quartz at $799cm^{-1}$ by FTIR. Results: By the comparison of quartz content in respirable dust between the two methods, the results of using DOF method were higher than that of transfer method. And the result of quartz concentrations in respirable dust estimated by DOF method were mostly higher than those by transfer method. Statistically significant difference of quartz concentrations in respirable dust were not found in shakeout, input, loading and transporting processes by two methods. But quartz concentrations in the molding process had the statistically significant difference between DOF and transfer method. Conclusions: The results of the study is suggested that, it be needed to correct the influence of the interferences in order to establish the DOF method when interfering minerals have an effect on quantitative analysis of quartz in respirable dust by the direct on filter method with FTIR.