• Title/Summary/Keyword: manufacturing energy

Search Result 1,886, Processing Time 0.028 seconds

State of art in utilization of agricultural residues and identification of priority biomass energy projects in the republic of Korea

  • Park, Soon-Chul-;Lee, Jin-Suk-;Cho, Jae-Kyung;Hong, Jong-Joon
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1993.05a
    • /
    • pp.20-32
    • /
    • 1993
  • Although the importance of agricultural sector decreased over the last several decades because of the economic growth in Korea led by the development of manufacturing sector, the biomass energy resources such as urban wastes, industrial wastes including agricultural residues emerged recently as a major target of development mainly because of environmental issues. (omitted)

  • PDF

Study of Welding Toughness Characteristics on the Root-pass Welding Process of High Tensile Steel at Tower Production for Offshore Wind Power Generation (해상풍력 발전용 타워 제작시 고장력강재의 초층용접에 관한 용접특성 연구)

  • Jung, Sung-Myoung;Kim, Ill-Soo;Kim, Ji-Sun;Na, Hyun-Ho;Lee, Ji-Hye
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.349-353
    • /
    • 2012
  • As the world wind energy market grows rapidly, the productions of wind power generation equipment have recently increased, but manufacturers are not able meet this requirement. Particularly offshore wind energy industry is one of the most popular renewable energy sectors. To generalize welding processes, the welding automation is considered for steel structure manufacturing in offshore wind energy to get high quality and productivity. Welding technology in construction of the wind towers is depended on progress productivity. In addition, the life of wind tower structures should be considered by taking account of the natural weathering and the load it endures. The root passes are typically deposited using Gas Tungsten Arc Welding(GTAW) with a specialized backing gas shield. Not only the validation consists of welders experienced in determining the welding productivity of the baseline welding procedure, but also the standard testing required by the ASME section IX and API1104 codes, toughness testing was performed on the completed field welds. This paper presents the welding characteristics of the root-pass welding of high tensile steel in manufacturing of offshore wind tower. Based on the result from welding experiments, optimal welding conditions were selected after analyzing correlation between welding parameters(peak current, background current and wire feed rate) and back-bead geometry such as back-bead width(mm) and back-bead height performing root-pass welding experiment under various conditions. Furthermore, a response surface approach has been applied to provide an algorithm to predict an optimal welding quality.

Characterization of the Deposited Layer Obtained by Direct Laser Melting of Fe-Cr Based Metal Powder (Fe-Cr계 금속 분말의 직접 레이저 용융을 통해 형성된 적층부 특성 분석)

  • Jang, Jeong-Hwan;Joo, Byeong-Don;Jeon, Chan-Hu;Moon, Young-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.107-115
    • /
    • 2012
  • Direct laser melting (DLM) is a powder-based additive manufacturing process to produce parts by layer-by-layer laser melting. As the properties of the manufactured parts depend strongly on the deposited laser-melted bead, deposited layers obtained by the DLM process were characterized in this study. This investigation used a 200 W fiber laser to produce single-line beads under a variety of different energy distributions. In order to obtain a feasible range for the two main process parameters (i.e. laser power and scan rate), bead shapes of single track deposition were intensively investigated. The effects of the processing parameters, such as powder layer thickness and scan spacing, on geometries of the deposited layers have also been analyzed. As a result, minimum energy criteria that can achieve a complete melting have been suggested at the given powder layer thickness. The surface roughnesses of the deposited beads were strongly dependent on the overlap ratio of adjacent beads and on the energy distributions of laser power. Through microstructural analysis and hardness measurement, the morphological and mechanical properties of the deposited layers at various overlapped beads have also been characterized.

Influence of Substrate Phase and Inclination Angle on Heat Transfer Characteristics in Vicinity of Hastelloy X Regions Deposited on S45C via Directed Energy Deposition (DED 공정을 이용한 S45C 위 Hastelloy X 분말 적층 시 기저부 상과 경사각이 적층부 인근 열전달 특성에 미치는 영향에 관한 연구)

  • Baek, Sun-Ho;Lee, Kwang-Kyu;Ahn, Dong-Kyu;Kim, Woo-Sung;Lee, Ho-Jin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.27-37
    • /
    • 2021
  • The use of additive manufacturing processes for the repair and remanufacturing of mechanical parts has attracted considerable attention because of strict environmental regulations. Directed energy deposition (DED) is widely used to retrofit mechanical parts. In this study, finite element analyses (FEAs) were performed to investigate the influence of the substrate phase and inclination angle on the heat transfer characteristics in the vicinity of Hastelloy X regions deposited via DED. FE models that consider the bead size and hatch distance were designed. A volumetric heat source model with a Gaussian distribution in a plane was adopted as the heat flux model for DED. The substrate and the deposited powder were S45C structural steel and Hastelloy X, respectively. Temperature-dependent thermal properties were considered while performing the FEAs. The effects of the substrate phase and inclination angle on the temperature distributions and depth of the heat-affected zone (HAZ) in the vicinity of the deposited regions were examined. Furthermore, the influence of deposition paths on depths of the HAZ were investigated. The results of the analyses were used to determine the suitable phase and inclination angle of the substrate as well as the appropriate deposition path.

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process (초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동)

  • Song, Junwoo;Han, Junhee;Kim, Song-Yi;Seok, Jinwoo;Kim, Hyoseop
    • Journal of Powder Materials
    • /
    • v.29 no.1
    • /
    • pp.34-40
    • /
    • 2022
  • Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

A Study on Concentrating Photovoltaic Module with Plate Structure (평판 구조의 집광형 태양광 모듈 구조에 관한 연구)

  • Park, Seung-Jae;Hong, Min-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-634
    • /
    • 2013
  • This study aims to investigate a new structure for a concentrating photovoltaic (PV) module using a III-V compound semiconductor solar cellto solve the problems of existing concentrating PV modules and to explore a concentrating optical system with a flat structure, which shows remarkable advantages in terms of manufacturing cost, installation, and maintenance. This study should greatly contribute toward the development of concentrating PV modules. This study was performed to achieve an improvement in efficiency and economy and to implement an actual product. A new source of renewable energy is the only way in which countries that cannot produce oil can even emerge as an energy power. Therefore, this work can serve as a fundamental study that will help South Korea grow into a country that is a PV power generation force.

A Study on Impact Performance of Rubber-Filled Sandwich Composite (Rubber-Filled 샌드위치 복합재료의 충격 특성 연구)

  • Huang Hao;Joe Chee-Ryong;Kim Dong-Uk
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.10a
    • /
    • pp.65-68
    • /
    • 2004
  • A new multifunctional sandwich composite was investigated in this paper. The honeycomb core of this composite was filled with viscoelastic material in order to obtain an improved impact performance. The fillings in the honeycomb cells was hoped to provide the act of energy dissipation in this combined material system. Low-velocity drop-weight test was set up to the specimens with various stacked carbon/epoxy laminate facesheets, $[0/90]_{4s},\;[0/45/-45/90]_{2s}$. Load and energy history were checked and compared for the both groups of specimens, with and without rubber fillings. Further, the damaged faces were inspected visually by ultrasonic C-scan.

  • PDF

A Study on the Design and Manufacturing of the Blind System with Auto-controlled Illuminance (자동 조도 조절 블라인드 시스템 설계 및 제작에 대한 연구)

  • Jang, Chong Min;Kim, Seong Keol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.615-621
    • /
    • 2013
  • A blind system for window glass has been designed and manufactured as a CapStone Design project at Seoul National University of Science and Technology. This system automatically controls the interior illuminance to maintain a uniform temperature. The aim of this project was to support an air conditioning system and heating equipment to maintain a good indoor environment. Proportional integral differential (PID) control using cadmium sulfide (CdS) sensors was applied to control it. Polaroid film was attached to the new blind system to reflect sunlight. It was found that the system had the potential to reduce energy consumption and may be used with a building energy management system (BEMS).

Characterization and Mechanical Properties of Stainless Steel 316L Fabricated Using Additive Manufacturing Processes (적층식 제조 공정을 활용한 스테인레스 316L 제작기술의 특징과 기계적 속성)

  • Choi, Cheol;Jung, Mihee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.1
    • /
    • pp.129-135
    • /
    • 2021
  • Recently, additive manufacturing (AM) technology such as powder bed fusion (PBF) and directed energy deposition (DED) are actively attempted as consumers' needs for parts with complex shapes and expensive materials. In the present work, the effect of processing parameters on the mechanical properties of 316L stainless steel coupons fabricated by PBF and DED AM technology was investigated. Three major mechanical tests, including tension, impact, and fatigue, were performed on coupons extracted from the standard components at angles of 0, 45, 90 degrees for the build layers, and compared with those of investment casting and commercial wrought products. Austenitic 316L stainless steel additively manufactured have been well known to be generally stronger but highly vulnerable to impact and lack in elongation compared to casting and wrought materials. The process-induced pore density has been proved the most critical factor in determining the mechanical properties of AM-built metal parts. Therefore, it was strongly recommended to reduce those lack of fusion defects as much as possible by carefully control the energy density of the laser. For example, under the high energy density conditions, PBF-built parts showed 46% higher tensile strength but more than 75% lower impact strength than the wrought products. However, by optimizing the energy density of the laser of the metal AM system, it has been confirmed that it is possible to manufacture metal parts that can satisfy both strength and ductility, and thus it is expected to be actively applied in the field of electric power section soon.