DOI QR코드

DOI QR Code

Preparation and Refinement Behavior of (Hf-Ti-Ta-Zr-Nb)C High-Entropy Carbide Powders by Ultra High Energy Ball Milling Process

초고에너지 볼 밀링공정에 의한 (Hf-Ti-Ta-Zr-Nb)C 고엔트로피 카바이드 분말 제조 및 미세화 거동

  • Song, Junwoo (Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology (KITECH)) ;
  • Han, Junhee (Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Song-Yi (Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology (KITECH)) ;
  • Seok, Jinwoo (Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Hyoseop (Research Institute of Advanced Manufacturing & Materials Technology, Korea Institute of Industrial Technology (KITECH))
  • 송준우 (한국생산기술연구원 뿌리기술연구소) ;
  • 한준희 (한국생산기술연구원 뿌리기술연구소) ;
  • 김송이 (한국생산기술연구원 뿌리기술연구소) ;
  • 석진우 (한국생산기술연구원 뿌리기술연구소) ;
  • 김효섭 (한국생산기술연구원 뿌리기술연구소)
  • Received : 2022.02.15
  • Accepted : 2022.02.25
  • Published : 2022.02.28

Abstract

Recently, high-entropy carbides have attracted considerable attention owing to their excellent physical and chemical properties such as high hardness, fracture toughness, and conductivity. However, as an emerging class of novel materials, the synthesis methods, performance, and applications of high-entropy carbides have ample scope for further development. In this study, equiatomic (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide powders have been prepared by an ultrahigh-energy ball-milling (UHEBM) process with different milling times (1, 5, 15, 30, and 60 min). Further, their refinement behavior and high-entropy synthesis potential have been investigated. With an increase in the milling time, the particle size rapidly reduces (under sub-micrometer size) and homogeneous mixing of the prepared powder is observed. The distortions in the crystal lattice, which occur as a result of the refinement process and the multicomponent effect, are found to improve the sintering, thereby notably enhancing the formation of a single-phase solid solution (high-entropy). Herein, we present a procedure for the bulk synthesis of highly pure, dense, and uniform FCC single-phase (Fm3m crystal structure) (Hf-Ti-Ta-Zr-Nb)C high-entropy carbide using a milling time of 60 min and a sintering temperature of 1,600℃.

Keywords

Acknowledgement

이 논문은 2020년도 정부(교육과학기술부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(NRF-2020M3D1A2102213).

References

  1. Y. Zhang, T. T. Zuo, Z. Tang, M. C. Gao, K. A. Dahmen, P. K. Liaw and Z. P. Lu: Prog. Mater. Sci., 61 (2014).
  2. J.-W. Yeh: JOM., 65 (2013) 12.
  3. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang: Adv. Eng. Mater., 6 (2004).
  4. M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin and J.- W. Yeh: Acta Mater., 59 (2011) 16.
  5. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu and Y. Yang: Mater., 19 (2016) 6.
  6. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw:Adv. Eng. Mater., 10 (2008) 6.
  7. X.-F. Wei, J.-X. Liu, F. Li, Y. Qin, Y.-C. Liang and G.-J. Zhang: J. Eur. Ceram. Soc., 39 (2019) 10.
  8. L. Feng, W.G. Fahrenholtz, G.E. Hilmas and Y. Zhou: Scr. Mater., 162 (2019).
  9. J. Zhou, J. Zhang, F. Zhang, B. Niu, L. Lei and W. Wang: Ceram., 44 (2018) 17.
  10. Y. Yang, W. Wang, G.-Y. Gan, X.-F. Shi and B.-Y. Tang: Z. Phys. B: Condens. Matter, 550 (2018).
  11. Y. R. Uhm, J. W. Kim, J. W. Jung and C. K. Rhee: J. Powder Meter., 16 (2009) 110.
  12. J. W. Song, H. S. Kim, S. S. Kim, J. M. Koo and S. J. Hong: J. Powder Meter., 17 (2010) 242.
  13. C. P. Peng, H. Tang, Y. He, X. Lu, P. Jia, G. Liu, Y. Zhao and M. Wang: J. Mater. Sci. Tech., 51 (2020) 161. https://doi.org/10.1016/j.jmst.2020.02.049
  14. P. Sarker, T. Harrington, C. Toher, C. Oses, M. Samiee, J. P. Maria, D. B. Brenner, K. S. Vecchio and S. Curtarolo: Nat. Commun., 9 (2018) 4980. https://doi.org/10.1038/s41467-018-07160-7
  15. E. Castle, T. Csanadi, S. Grasso, J. Dusza and M. Reece: Sci. Rep., 8 (2019) 8609. https://doi.org/10.1038/s41598-018-26827-1
  16. A. Sedegov, S. Vorotilo, V. Tsybulin, K. Kuskov and D. Moscovskikh: Mater. Sci. Engi. 558 (2019) 012043.
  17. L. Feng, W. G. Fahrenholtz and G. E. Hilmas: J. Am. Ceram Soc., 102 (2019) 7217. https://doi.org/10.1111/jace.16672
  18. T. J. Harrington, J. Glid, P. Sarker, C. Toher, C. M. Rost, O. F. Dippo, C. McElfresh, K. Kaufmann, E. Marin, L. Borowski, P. E. Hopkins, J. Luo, S. Curtaolo, D. W. Brenner and K. S. Vecchio: Acta Mater., 166 (2019) 271. https://doi.org/10.1016/j.actamat.2018.12.054