• Title/Summary/Keyword: manifold

Search Result 1,802, Processing Time 0.027 seconds

ADMISSIBLE INERTIAL MANIFOLDS FOR INFINITE DELAY EVOLUTION EQUATIONS

  • Minh, Le Anh
    • Bulletin of the Korean Mathematical Society
    • /
    • v.58 no.3
    • /
    • pp.669-688
    • /
    • 2021
  • The aim of this paper is to prove the existence of an admissible inertial manifold for mild solutions to infinite delay evolution equation of the form $$\{{\frac{du}{dt}}+Au=F(t,\;u_t),\;t{\geq}s,\\\;u_s({\theta})={\phi}({\theta}),\;{\forall}{\theta}{\in}(-{{\infty}},\;0],\;s{\in}{\mathbb{R}},$$ where A is positive definite and self-adjoint with a discrete spectrum, the Lipschitz coefficient of the nonlinear part F may depend on time and belongs to some admissible function space defined on the whole line. The proof is based on the Lyapunov-Perron equation in combination with admissibility and duality estimates.

SLANT LIGHTLIKE SUBMANIFOLDS OF INDEFINITE NEARLY KAEHLER MANIFOLDS

  • Kumar, Tejinder;Kumar, Sangeet;Kumar, Pankaj
    • Honam Mathematical Journal
    • /
    • v.43 no.2
    • /
    • pp.239-258
    • /
    • 2021
  • In the present paper, we introduce the study of slant lightlike submanifolds of indefinite nearly Kaehler manifolds. After proving some geometric results for the existence of slant lightlike submanifolds of indefinite nearly Kaehler manifolds, we give a non-trivial example of this class of lightlike submanifolds. Then, we derive some conditions for the integrability of the distributions associated with slant lightlike submanifolds of indefinite nearly Kaehler manifolds. Consequently, we study totally umbilical slant lightlike submanifolds of indefinite nearly Kaehler manifolds. Subsequently, we investigate minimal slant lightlike submanifolds of indefinite nearly Kaehler manifolds.

ON TORIC HAMILTONIAN T-SPACES WITH ANTI-SYMPLECTIC INVOLUTIONS

  • Kim, Jin Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.3
    • /
    • pp.671-683
    • /
    • 2022
  • The aim of this paper is to deal with the realization problem of a given Lagrangian submanifold of a symplectic manifold as the fixed point set of an anti-symplectic involution. To be more precise, let (X, ω, µ) be a toric Hamiltonian T-space, and let ∆ = µ(X) denote the moment polytope. Let τ be an anti-symplectic involution of X such that τ maps the fibers of µ to (possibly different) fibers of µ, and let p0 be a point in the interior of ∆. If the toric fiber µ-1(p0) is real Lagrangian with respect to τ, then we show that p0 should be the origin and, furthermore, ∆ should be centrally symmetric.

HISTORIC BEHAVIOR FOR FLOWS WITH THE GLUING ORBIT PROPERTY

  • de Santana, Heides Lima
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.337-352
    • /
    • 2022
  • We consider the set of points with historic behavior (which is also called the irregular set) for continuous flows and suspension flows. In this paper under the hypothesis that (Xt)t is a continuous flow on a d-dimensional Riemaniann closed manifold M (d ≥ 2) with gluing orbit property, we prove that the set of points with historic behavior in a compact and invariant subset ∆ of M is either empty or is a Baire residual subset on ∆. We also prove that the set of points with historic behavior of a suspension flows over a homeomorphism satisfyng the gluing orbit property is either empty or Baire residual and carries full topological entropy.

GEOMETRIC CHARACTERISTICS OF GENERIC LIGHTLIKE SUBMANIFOLDS

  • Jha, Nand Kishor;Pruthi, Megha;Kumar, Sangeet;Kaur, Jatinder
    • Honam Mathematical Journal
    • /
    • v.44 no.2
    • /
    • pp.179-194
    • /
    • 2022
  • In the present study, we investigate generic lightlike submanifolds of indefinite nearly Kaehler manifolds. After proving the existence of generic lightlike submanifolds in an indefinite generalized complex space form, a non-trivial example of this class of submanifolds is discussed. Then, we find a characterization theorem enabling the induced connection on a generic lightlike submanifold to be a metric connection. We also derive some conditions for the integrability of distributions defined on generic lightlike submanifolds. Further, we discuss the non-existence of mixed geodesic generic lightlike submanifolds in a generalized complex space form. Finally, we investigate totally umbilical generic lightlike submanifolds and minimal generic lightlike submanifolds of an indefinite nearly Kaehler manifold.

GENERALIZED KILLING STRUCTURE JACOBI OPERATOR FOR REAL HYPERSURFACES IN COMPLEX HYPERBOLIC TWO-PLANE GRASSMANNIANS

  • Lee, Hyunjin;Suh, Young Jin;Woo, Changhwa
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.2
    • /
    • pp.255-278
    • /
    • 2022
  • In this paper, first we introduce a new notion of generalized Killing structure Jacobi operator for a real hypersurface M in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um). Next we prove that there does not exist a Hopf real hypersurface in complex hyperbolic two-plane Grassmannians SU2,m/S (U2·Um) with generalized Killing structure Jacobi operator.

h-almost Ricci Solitons on Generalized Sasakian-space-forms

  • Doddabhadrappla Gowda, Prakasha;Amruthalakshmi Malleshrao, Ravindranatha;Sudhakar Kumar, Chaubey;Pundikala, Veeresha;Young Jin, Suh
    • Kyungpook Mathematical Journal
    • /
    • v.62 no.4
    • /
    • pp.715-728
    • /
    • 2022
  • The aim of this article is to study the h-almost Ricci solitons and h-almost gradient Ricci solitons on generalized Sasakian-space-forms. First, we consider h-almost Ricci soliton with the potential vector field V as a contact vector field on generalized Sasakian-space-form of dimension greater than three. Next, we study h-almost gradient Ricci solitons on a three-dimensional quasi-Sasakian generalized Sasakian-space-form. In both the cases, several interesting results are obtained.

SASAKIAN STATISTICAL MANIFOLDS WITH QSM-CONNECTION AND THEIR SUBMANIFOLDS

  • Sema Kazan
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.471-490
    • /
    • 2023
  • In this present paper, we study QSM-connection (quarter-symmetric metric connection) on Sasakian statistical manifolds. Firstly, we express the relation between the QSM-connection ${\tilde{\nabla}}$ and the torsion-free connection ∇ and obtain the relation between the curvature tensors ${\tilde{R}}$ of ${\tilde{\nabla}}$ and R of ∇. After then we obtain these relations for ${\tilde{\nabla}}$ and the dual connection ∇* of ∇. Also, we give the relations between the curvature tensor ${\tilde{R}}$ of QSM-connection ${\tilde{\nabla}}$ and the curvature tensors R and R* of the connections ∇ and ∇* on Sasakian statistical manifolds. We obtain the relations between the Ricci tensor of QSM-connection ${\tilde{\nabla}}$ and the Ricci tensors of the connections ∇ and ∇*. After these, we construct an example of a 3-dimensional Sasakian manifold admitting the QSM-connection in order to verify our results. Finally, we study the submanifolds with the induced connection with respect to QSM-connection of statistical manifolds.

WEAKLY BERWALD SPACE WITH A SPECIAL (α, β)-METRIC

  • PRADEEP KUMAR;AJAYKUMAR AR
    • Honam Mathematical Journal
    • /
    • v.45 no.3
    • /
    • pp.491-502
    • /
    • 2023
  • As a generalization of Berwald spaces, we have the ideas of Douglas spaces and Landsberg spaces. S. Bacso defined a weakly-Berwald space as another generalization of Berwald spaces. In 1972, Matsumoto proposed the (α, β) metric, which is a Finsler metric derived from a Riemannian metric α and a differential 1-form β. In this paper, we investigated an important class of (α, β)-metrics of the form $F={\mu}_1\alpha+{\mu}_2\beta+{\mu}_3\frac{\beta^2}{\alpha}$, which is recognized as a special form of the first approximate Matsumoto metric on an n-dimensional manifold, and we obtain the criteria for such metrics to be weakly-Berwald metrics. A Finsler space with a special (α, β)-metric is a weakly Berwald space if and only if Bmm is a 1-form. We have shown that under certain geometric and algebraic circumstances, it transforms into a weakly Berwald space.

CONFORMAL HEMI-SLANT SUBMERSIONS FROM COSYMPLECTIC MANIFOLDS

  • Vinay Kumar;Rajendra Prasad;Sandeep Kumar Verma
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.205-221
    • /
    • 2023
  • The main goal of the paper is the introduction of the notion of conformal hemi-slant submersions from almost contact metric manifolds onto Riemannian manifolds. It is a generalization of conformal anti-invariant submersions, conformal semi-invariant submersions and conformal slant submersions. Our main focus is conformal hemi-slant submersion from cosymplectic manifolds. We tend also study the integrability of the distributions involved in the definition of the submersions and the geometry of their leaves. Moreover, we get necessary and sufficient conditions for these submersions to be totally geodesic, and provide some representative examples of conformal hemi-slant submersions.