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HISTORIC BEHAVIOR FOR FLOWS WITH

THE GLUING ORBIT PROPERTY

Heides Lima de Santana

Abstract. We consider the set of points with historic behavior (which
is also called the irregular set) for continuous flows and suspension flows.

In this paper under the hypothesis that (Xt)t is a continuous flow on a

d-dimensional Riemaniann closed manifold M (d ≥ 2) with gluing orbit
property, we prove that the set of points with historic behavior in a com-

pact and invariant subset ∆ of M is either empty or is a Baire residual

subset on ∆. We also prove that the set of points with historic behavior
of a suspension flows over a homeomorphism satisfyng the gluing orbit

property is either empty or Baire residual and carries full topological
entropy.

1. Introduction

Our main goal here is to study the set of points with historic behavior for
continuous flows satisfying gluing orbit property and suspension flows over
homeomorphisms satisfying the gluing orbit property. In the sense of historic
behavior, Ruelle in [16] says that a point x has historic behavior if the sequence
1
n

∑n−1
i=0 δfi(x) does not converge in the weak∗ topology. More precisely, let M

be a compact metric space, f : M → M a continuous map and ϕ : M → Rd
(d ≥ 1) a continuous observable, a point x ∈ M has historic behavior with
respect to ϕ if the limit

lim
n→∞

1

n

n−1∑
i=0

ϕ(f i(x))

does not converge. The set of points with historic behavior with respect to ϕ is
denoted by Iϕ. Let us recall the definition of points with historic behavior for
continuous time. Let (Xt)t be a continuous flow on compact metric space M
and ϕ : M → Rd (d ≥ 1) a continuous observable. We say that a point x ∈M
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has historic behavior with respect to ϕ if

lim
t→∞

1

t

∫ t

0

ϕ ◦Xs(x) ds

does not exist. We will keep denoting Iϕ for set of points with historic behavior
of (Xt)t with respect to ϕ. It is also known as irregular set of (Xt)t with
respect to ϕ. We can similarly define the set of points with historic behavior for
quotients of Birkhoff averages with applications to the case of suspension flows,
see [3]. The notion of historic behavior allows some applications, including
rotation sets studied in [9, 12,13].

Note that by Birkhoff’s Ergodic Theorem Iϕ has zero measure with respect
to any invariant probability measure. If the observable ϕ is cohomologous to
a constant (i.e., there exist a bounded function φ and a constant c such that
ϕ = φ−φ ◦ f + c), then the set Iϕ is empty. On the other hand, Takens in [17]
claimed that the set of points with historic behaviour is not negligible, from
the topological viewpoint. This fact was first observed by Pesin and Pitskel in
[15], they show that these points carry full topological pressure for full shift.
Moreover, Barreira and Schmeling in [4] show that from the point of view of
dimension theory it as large as the whole space.

We say that B ⊂ M is Baire residual if it contains a countable intersection
of open and dense subsets of M . Barreira, Li and Valls prove in [2] that for
continuous map with specification property and continuous observable the set
of points with historic behavior is either empty or is Baire residual. Thompson
proves in [18] under the same assumptions that irregular set is either empty
or carries full topological pressure. Moreover, the author and Varandas in [12]
showed that for continuous maps with gluing orbit property and continuous
observables the set of points with historic behavior is either empty or it is a
Baire residual and it carries full topological pressure. More recently, Araujo
and Pinheiro in [1] proved that the set of point with wild historic behavior
(a notion more general of points with historic behavior) for wide classes of
dynamical models is a topologically generic subset. In [10] it is studied historic
behavior for geometric Lorenz flows. A recently published article by Carvalho
and Varandas ([8]) establishs a sufficient condition for a continuous map and
flow on a compact metric space to have a Baire residual set of points with
historic behavior. Many more results about the set of points with historic
behavior are known. But, concerning to the continuous time, the set of points
with historic behavior is less studied.

We will recall the definiton of specification and gluing orbit property. First,
in discrete time setting, let f : M → M be a continuous map on a compact
metric space M . We say that f satisfies the specification property if for any ε >
0 there exists an integer m = m(ε) ≥ 1 so that for any points x1, x2, . . . , xk ∈M
and for any positive integers n1, . . . , nk and 0 ≤ p1, . . . , pk−1 with pi ≥ m(ε)

there exists a point y ∈ X such that d(f j(y), f j(x1)) ≤ ε for every 0 ≤ j ≤ n1
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and
d(f j+n1+p1+···+ni−1+pi−1(y), f j(xi)) ≤ ε

for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni.
The definition of gluing orbit property, introduced in [7], is as follows. Let

f : M → M be a continuous map on a compact metric space M . We say
that f satisfies the gluing orbit property if for any ε > 0 there exists an integer
m = m(ε) ≥ 1 so that for any points x1, x2, . . . , xk ∈ M and any positive
integers n1, . . . , nk there are 0 ≤ p1, . . . , pk−1 ≤ m(ε) and a point y ∈ M so

that d(f j(y), f j(x1)) ≤ ε for every 0 ≤ j ≤ n1 and

d(f j+n1+p1+···+ni−1+pi−1(y), f j(xi)) ≤ ε
for every 2 ≤ i ≤ k and 0 ≤ j ≤ ni.

Now we recall the gluing orbit property for flows, introduced in [7]. Let (Xt)t
be a continuous flow on a compact manifold M and ∆ ⊂M be a (Xt)t-invariant
subset. We say that (Xt)t≥0 satisfies the gluing orbit property if for any ε > 0
there exists K = K(ε) > 0 such that for any points x1, x2, . . . , xk ∈ M and
times t1, . . . , tk ≥ 0 there are 0 ≤ p1, . . . , pk−1 ≤ K(ε) and a point y ∈ M so
that

d(Xt(y)), Xt(x1)) < ε for all t ∈ [0, t1]

and
d(Xt+

∑i−1
j=1 tj+pj

(y), Xt(xi)) < ε for all t ∈ [0, ti]

for every 2 ≤ i ≤ k.
Note that the gluing orbit property is clearly a topological invariant and is

weaker than specification. Other evidence is that under the gluing orbit prop-
erty the dynamical is not necessarily topologically mixing but it is transitive. A
continuous flow with denseness of periodic orbits and the shadowing property
satisfies a gluing orbit property, see [5, 6] for more details and examples.

In our first result here, we consider a continuous flow with gluing orbit
property on some compact and invariant subset. Under these circumstances
we prove that the set of points with historic behavior is large from the topo-
logical viewpoint, if it is not empty. The second result is about suspension flow
over homeomorphisms with gluing orbit property. We prove that if the set of
points with historic behavior is non-empty, then it is large from the topological
viewpoint.

This paper is organized as follows. In Section 2 we state our main results.
The Section 3 is the preliminary, where we recall the definitions that appear
in the results and we make some comments. The proofs of the main results
occupy Section 4.

2. Statement of the main results

Our first main result extend Theorem D of [12] for continuous time dynamics.
We describes the set of points with historic behavior of a continuous flow with
gluing orbit property. More precisely:
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Theorem 2.1. Let M be a d-dimensional Riemaniann closed manifold with
d ≥ 2 and (Xt)t be a continuous flow on M with the gluing orbit property on
compact and invariant subset ∆. If ϕ : M → Rd (d ≥ 1) is a continuous
observable, then Iϕ ∩∆ is either empty or it is a Baire residual subset of ∆.

The conclusion of Theorem 2.1 can be written as follows: either there is
v ∈ Rd so that

lim
T→∞

1

T

∫ T

0

ϕ(Xt(x)) dt = v

for all x ∈ ∆, or the set points x ∈ ∆ so that

(
1

T

∫ T

0

ϕ(Xt(x)) d t)T≥1

accumulates in a non-trivial connected subset of Rd is Baire residual on ∆ (the
expresion non-trivial means that the set is not a singleton).

Let M be a d-dimensional Riemaniann closed manifold (d ≥ 2). For L > 0,

denote X0(M) the set of continuous vector fields X : M → TM and X0,1
L (M)

the set of Lipschitz continuous vector fields X : M → TM with Lipschitz
constant ≤ L. We endow X0(M) and X0,1

L (M) with the C0-topology, i.e., given

X,Y ∈ X0,1
L (M), X is ε-close Y if maxx∈M ‖X(x)−Y (x))‖ < ε. This is a Baire

space (cf. [5]). Let (Xt)t be a continuous flow on M . We say that p ∈ M is a
non-wandering point for (Xt)t if for any neighbourhood U of p and any η > 0,
there exists T > η such that XT (U) ∩ U 6= ∅. Let us denote by Ω(X) the set
of non-wandering points of (Xt)t. Given x, y ∈ M we say that x ≈ y if for
any δ > 0 and T > 1 there exists a (δ, T )-pseudo-orbit [xi, ti]i=1,...,k such that
x1 = x and Xtk(xk) = y. The relation ≈ is an equivalence relation. Each of
the equivalence classes of ≈ is called a chain recurrence class. We observe that
chain recurrence classes are disjoint, compact and invariant subsets of M .

Now we turn our attention to suspension flows over continuous maps de-
fined on a compact metric space satisfying the gluing orbit property. Theorem
F of [7] shows that if the roof function satisfies a bounded distortion prop-
erty, then the suspension flow satisfies the gluing orbit property, so applying
Theorem 2.1 we have that the set of points with historic behavior is either

empty or is a Baire residual. In the case of suspension flow we denote by ÎΦ
the set of points with historic behavior of a potential Φ. The next result was
inspired by Thompson [18] which proves a similar result under the assumption
of specification property.

Theorem 2.2. Let M be a compact metric space and f : M → M be a
continuous map on M with gluing orbit property. Assume that (Xt)t is a sus-
pension flow over f , that r : M → (0,∞[ is a continuous roof function bounded
away from zero and Φ : Mr → Rd is a continuous observable. If the set
of points with historic behavior of Φ is non-empty, then it is a Baire resid-
ual subset of Mr and carries full topological entropy on Mr. In other words,
hÎΦ((Xt)t) = htop((Xt)t).
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3. Preliminaries

3.1. Suspension flows

Let M be a compact metric space, f : M → M be a continuous map and
r : M −→ [0,∞) be a continuous roof function bounded away from zero. We
define the suspension flow (Xt)t over f by

Xt(x, s) = (x, s+ t),

whenever the expression is well defined, acting on

Mr = {(x, t) ∈M × R+ : 0 ≤ t ≤ r(x)}/ ≈,
where ≈ is the equivalence relation given by (x, r(x)) ≈ (f(x), 0) for all x ∈M .
Since r is continuous, (Xt)t defines a flow on Mr which is continuous with
respect to the Bowen-Walters distance (see [7]). In local coordinates, (Xt)t
coincides with the flow along the vertical direction. More precisely,

Xt(x, s) =
(
fk(x), s+ t−

k−1∑
j=0

r(f j(x))
)
,

where k = k(x, s, t) is determined by
∑k−1
j=0 r(f

j(x)) ≤ s+ t <
∑k
j=0 r(f

j(x)).
Given a continuous map Φ : Mr → R, we associate the function ϕ : M → R

defined by ϕ(x) =
∫ r(x)

0
Φ(x, s) ds. Note that ϕ is continuous. For µ-invariant

measure in M we define the measure µr by∫
Mr

Φ dµr =

∫
M

ϕdµ /

∫
r d µ.

3.2. Pressure and entropy

First, we recall the definition of topological pressure topological entropy for
discrete time setting. Let (M,d) be a compact metric space, f : M → M
a continuous map and ψ : M → R a continuous potential. Given n ∈ N
and ε > 0 we say that E ⊂ M is (n, ε)-separated if given x, y ∈ E, there
exist j ∈ {0, . . . , n − 1} such that d(f j(x), f j(y)) ≥ ε. In the other words,
if x ∈ E, then B(x, n, ε) does not contain any other element of E, where
B(x, n, ε) := {y ∈M : d(f j(x), f j(y)) < ε for all 0 ≤ j ≤ n−1} is said dynamic
ball from center x, length n and radius ε > 0. We define the topological pressure
of f with respect to ψ by

P (f, ψ) = lim
ε→0

lim sup
n→∞

1

n
log sup

E

∑
x∈E

eSnψ(x),

where Snψ(x) :=
∑n−1
j=0 ψ(f j(x)) and the supremum is taken over every (n, ε)-

separated sets E contained in M . In the case that ψ ≡ 0, we obtain the
topological entropy of f , denoted by htop(f).

We present the definitions of entropy for flows. Let (Xt)t be a flow on a
compact metric space M . Given x ∈ M , T > 0 and ε > 0, we call dynamic
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ball of center x, length T and radius ε > 0 to the set B(x, T, ε) = {y ∈ M :
d(Xt(x), Xt(y)) < ε for all 0 ≤ t ≤ T}. We say that E ⊂ M is a set (T, ε)-
separated if the dynamic ball B(x, T, ε) of each x ∈ E does not contain any
other element of E. If s(T, ε) denotes the maximal cardinality of a (T, ε)-
separated E ⊂M , then define the topological entropy of the flow (Xt)t by

htop((Xt)t) = lim
ε→0

lim sup
T→∞

1

T
log s(T, ε).

Now, we define relative pressure and relative entropy in the discrete time
setting: Let M be a compact metric space, f : M →M a continuous map and
Z ⊂M be an f -invariant Borel set. Given s ∈ R and ψ : M → R a continuous
potential. Define

Q(Z,ψ, s, ε,N,Γ) =
∑

Bni
(xi,ε)∈Γ

e−s ni +Sni
ψ(Bni

(xi,ε))

and
M(Z,ψ, s, ε,N) = inf

Γ
{Q(Z,ψ, s, ε,N,Γ)} ,

where Sni
ψ(Bni

(xi, ε)) := supx∈Bni
(xi,ε)

∑ni−1
k=0 ψ(fk(x)) where the infimum

is taken over all countable collections Γ = {Bni
(xi, ε)}i that cover Z and so

that ni ≥ N . Since the function M(Z,ψ, s, ε,N) is non-decreasing in N the
limit m(Z,ψ, s, ε) = limN→∞M(Z,ψ, s, ε,N) does exist. Let

PZ(f, ψ, ε) = inf{s ∈ R : m(Z,ψ, s, ε) = 0} = sup{s ∈ R : m(Z,ψ, s, ε) =∞}.
The existence of PZ(f, ψ, ε) follows by the Carathéodory structure [14]. The
topological pressure on Z with respect to ψ (and f) is defined by

PZ(f, ψ) = lim
ε→0

PZ(f, ψ, ε).

We set hZ(f, ε) = PZ(f, 0, ε) for every ε > 0 and define the topological entropy
on Z with respect f by hZ(f) = PZ(f, 0).

We define relative entropy in the continuous time setting: Let Z ⊂ M be
an arbitrary Borel set. Let (Xt)t be a continuous flow on M . Consider the
finite collections Γ = {Bti(xi, ε)}i, where ti > 0, xi ∈ M and Bti(xi, ε) =
{x ∈ M : d(Xs(x), Xs(y)) < ε for all s ∈ [0, ti)}. Given T > 0, for s ∈ R and
ψ ∈ C0(M,R) define:

Q(Z,ψ, s,Γ) =
∑

Bti
(xi,ε)∈Γ

e−s ti and M(Z, s, ε, T ) = inf
Γ

Q(Z, s,Γ),

where the infimum is taken over all countable collections of the form {Bti(xi, ε)}i
with xi ∈M such that Γ covers Z and ti ≥ T for all i. Define

m(Z, s, ε) = lim
T→∞

M(Z, s, ε, T ).

The existence of the limit follows by Caratheodory structure [14]. We can show
that

h(Z, ε) = inf{s : m(Z, s, ε) = 0} = sup{s : m(Z, s, ε) =∞}.
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Define the topological entropy on Z with respect to (Xt)t by

hZ((Xt)t) = lim
ε→0

h(Z, ε).

4. Proof of the theorems

In this section we prove the main results.

4.1. Proof of Theorem 2.1

The proof follows a strategy of Li and Wu in [11]. Let (Xt)t be a continuous
flow on M with the gluing orbit property in a compact and invariant subset ∆
of M and let ϕ : M → Rd be a continuous function. For d ≥ 2, we define

Lϕ = {~v ∈ Rd : Aϕ(~v) 6= ∅},

where

Aϕ(~v) := {x ∈ ∆ : lim
t→∞

1

t

∫ t

0

ϕ ◦Xs(x) ds = ~v}.

Recall that the set of points with historic behavior of (Xt)t with respect to ϕ,

Iϕ =

(
x ∈M : lim

t→∞

1

t

∫ t

0

ϕ ◦Xs(x)dsdoes not exist

)
.

If Iϕ ∩∆ = ∅ we are done. Thus, in what follows we suppose that Iϕ ∩∆ is
non-empty.

Let D be a countable and dense subset on ∆. Given ε > 0 fixed let K(ε) be
given by the gluing orbit property on ∆. For w ∈ Lϕ, δ > 0 and n ∈ N let

P (w, δ, t) =

{
x ∈ ∆ :

∥∥∥∥1

t

∫ t

0

ϕ(Xr(x)) d r − w
∥∥∥∥ < δ

}
.

Clearly, for w ∈ Lϕ and any δ > 0 the set P (w, δ, t) is not empty for every
sufficiently large t.

Note that as Iϕ ∩∆ 6= ∅, then there are u, v ∈ Lϕ distinct. Let {δk}k≥1 ↘ 0
be a sequence of positive real numbers and let {tk}k≥1 ↗∞ be a sequence of

integers with tk � Kk, where Kk := K(ε/2k), (meaning limk→∞
Kk

tk
= 0) so

that P (u, δ2j−1, t2j−1) 6= ∅ and P (v, δ2j , t2j) 6= ∅ for all j ≥ 1.
Given q ∈ D and k ≥ 1, let W0 = {q}. For j ≥ 1 let W2j−1 be a max-

imal (t2j−1, 8ε)-separated subset of P (u, δ2j−1, t2j−1) and let W2j be a maxi-
mal (t2j , 8ε)-separated subset of P (v, δ2j , t2j). Choose a sequence of integers
{Nk}k≥1 so that

lim
k→ ∞

tk +Kk

Nk
= 0 and lim

k→ ∞

N1(t1 +K1) + · · ·+Nk(tk +Kk)

Nk+1
= 0.(1)

We need the following auxiliary construction. For k ≥ 1, the gluing orbit
property ensures that for every xk := (xk1 , . . . , x

k
Nk

) ∈WNk

k (where WNk

k means
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to say that it is the cartesian product of Nk copies of Wk) there exists a point
y = y(xk) ∈M and transition time functions

pkj : WNk

k × R+ → R+, j = 1, 2, . . . , Nk − 1

bounded by Kk so that

d(Xej+t(y), Xt(x
k
j )) <

ε

2k
(2)

for every t ∈ [0, tk] and j = 1, 2, . . . , Nk − 1, where

ej =

{
0, if j = 1,

(j − 1) tk +
∑j−1
r=1 p

k
r , if j = 2, . . . , Nk.

For k ≥ 1 and j ∈ {1, 2, . . . , Nk − 2} we have that pkj = pkj (xk1 , x
k
2 , . . . , x

k
Nk
, ε)

is a function that describes the time lag that the orbit of y = y(xk) takes to

jump from an ε
2k -neighborhood of Xtk(xkj ) to an ε

2k -neighborhood of xkj+1, and
it is bounded above by Kk.

We order the family {Wk}k≥1 lexicographically: Wk ≺ Ws if and only if
k ≤ s. We proceed to make a recursive construction of points in a neighborhood
of q that shadow Nk points in the family Wk successively with bounded time
lags in between. More precisely, we construct a family {Lk(q)}k≥0 of sets
(guaranteed by the gluing orbit property) contained in a neighborhood of q
and a family of positive numbers {lk}k≥0 (also depending on q) corresponding
to the time during the shadowing process.

• Let L0(q) = {q} and l0 = N0 = t0 = 0;

• Let L1(q) = {z = z(q, y) ∈ M : x1 ∈ WN1
1 } and l1 = p1

0 + s1, where

the point y = y(x1) is as in (2), 0 ≤ p1
0 ≤ K1 = K( ε2 ) is the time

lag that the orbit of z takes to jump from an ε
2 -neighborhood of q

to an ε
2 -neighborhood of x1

1 given by the gluing orbit property, s1 =

N1t1 +
∑N1−1
r=1 p1

r and z(q, y(x1)) satisfies

d(z, q) <
ε

2
and d(Xp1

0+t(z), Xt(y(x1))) <
ε

2

for every t ∈ [0, s1]. Such a point exists due to the gluing orbit property.

• Let Lk(q) = {z = z(z0, y(xk)) ∈ M : xk ∈ WNk

k and z0 ∈ Lk−1}
and lk = lk−1 + pk0 + sk, where the point y = y(xk) is defined as

in (2), pk0 is the time lag that the orbit of z takes to jump from an
ε

2k−1 - neighborhood of Xtk−1
(xk−1
Nk−1

) to an ε
2k -neighborhood of xk1 , it is

bounded above by Kk, sk = Nktk +
∑Nk−1
r=1 pkr , and z satisfies

d(Xt(z), Xt(z0)) <
ε

2k
, ∀ t ∈ [0, lk−1]

and
d(Xlk−1+pk0+t(z), Xt(y(xk))) <

ε

2k

for all t ∈ [0, sk].
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By construction, for every k ≥ 1, we have:

(3) lk =

k∑
s=1

Nsts +

k∑
s=1

Ns−1∑
r=0

psr.

Remark 4.1. Note that lk and sk are functions (since these depend on pkj ), the

pkj are bounded by Kk and by definition of Nk (cf. (1)) and definition of lk

(cf. (3)) one has that
lk

Nk+1
≤

∑k
s=1 Ns(ts+Ks)

Nk+1
tends to zero as k →∞.

For every k ≥ 0, q ∈ D and ε > 0 define

Rk(q, ε) =
⋃

z∈Lk(q)

Blk

(
z,

ε

2k

)
,(4)

R(q, ε) =

∞⋂
k=0

Rk(q, ε)

and

R(ε) =
⋃
q∈D
Rk(q, ε),

where Blk
(z, δ) is the set of points y ∈ ∆ so that d(Xα(z), Xα(y)) < δ for all

α ∈ [0, lk−1] and d(Xβ(z), Xβ(y)) ≤ δ for all β ∈ [lk−1, lk]. By construction
Rk+1(q, ε) ⊂ Rk(q, ε) for every k ≥ 0, q ∈ D and ε > 0. Finally, we define the
set

R′ =

∞⋃
j=1

R(
1

j
) =

∞⋃
j=1

⋃
q∈D

∞⋂
k=0

⋃
z∈Lk(q)

Blk

(
z,

1

j2k

)
.

Now we define the following auxiliar set

R =

∞⋂
k=0

∞⋃
j=1

⋃
q∈D

⋃
z∈Lk(q)

Blk

(
z,

1

j2k

)
.

Note that R ⊂ R′. The following lemma ensures that R is a Baire generic
subset of ∆.

Lemma 4.2. R is a Gδ-set and it is dense in ∆.

Proof. First we prove denseness. It is enough to show that R ∩ B(x, r) 6= ∅
for every x ∈ ∆ and r > 0. In fact, given x ∈ ∆ and r > 0, there exist
j ∈ N with 2/j < r and q ∈ D such that d(x, q) < 1/j. Choose a point
y ∈ R(q, 1

j ), it holds that d(q, y) < 1
j because R(q, 1

j ) ⊂ B(q, 1
j ). Therefore,

d(x, y) ≤ d(x, q) + d(q, y) < 2/j < r. This ensures that R∩B(x, r) 6= ∅.
Now, we prove that R is a Gδ-set. It suffices to show that R(q, ε) is a Gδ-set

for any ε > 0 and any q ∈ D. Thus, fix ε > 0 and q ∈ D. For any k ≥ 1,
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consider the open set

Gk(q, ε) :=
⋃

z∈Lk(q)

B̃
(
z,

ε

2k

)
,

where B̃(z, ε
2k ) is the set of points y ∈ ∆ so that d(Xα(z), Xα(y)) < δ for all

α ∈ [0, lk]. It is clear that Gk(q, ε) ⊂ Rk(q, ε) for any k ≥ 1. We claim that
Rk+1(q, ε) ⊂ Gk(q, ε) for any k ≥ 1, in which case we conclude that⋃

q∈D

∞⋃
j=1

Rk(q,
1

j
) =

⋃
q∈D

∞⋃
j=1

Gk(q,
1

j
).

Consequently we obtain that R is a countable intersection of open sets, hence
it is a Gδ-set.

Now we proceed to prove the previous claim. Given y ∈ Rk+1(q, ε), there
exists z ∈ Lk+1(q) such that y ∈ Blk+1

(z, ε
2k+1 ). By definition of Lk+1(q), there

exists z0 ∈ Lk(q) such that d(Xt(z), Xt(z0)) < ε
2k+1 for all t ∈ [0, lk]. Thus,

d(Xt(z0), Xt(y)) ≤ d(Xt(z), Xt(z0)) + d(Xt(z), Xt(y))

<
ε

2k+1
+

ε

2k+1
=

ε

2k

for all t ∈ [0, lk]. This proves that y ∈ Gk(q, ε), proves the claim and completes
the proof of the lemma. �

We must show that R ⊂ Iϕ. It is sufficient to prove that R(ε, q) ⊂ Iϕ for
any ε > 0 and any q ∈ D. For any η > 0 write

var(ϕ, η) := sup{‖ϕ(x)− ϕ(y)‖ : d(x; y) < η}

which, by compactness, satisfies var(ϕ, η) → 0 as η → 0. We need one more
lemma:

Lemma 4.3. Let u, v ∈ Lϕ distinct. For every k ≥ 1 the following following
sentences hold:

(i) If k is odd and y = y(xk), then∥∥∥ ∫ sk

0

ϕ(Xr(y)) d r − sku
∥∥∥ ≤ Nktk( var(ϕ,

ε

2k
) + δk

)
+ 2(Nk − 1)Kk‖ϕ‖∞;

(ii) If k is even, then∥∥∥∫ sk

0

ϕ(Xr(y)) d r − skv
∥∥∥ ≤ Nktk( var(ϕ,

ε

2k
) + δk

)
+ 2(Nk − 1)Kk‖ϕ‖∞.

Proof. Let k ≥ 1 be fixed and assume that it is odd (the case when it is even
is completely analogous). By construction of Wk and relation (2) there exists

(xk1 , . . . , x
k
Nk

) ∈WNk

k so that

d(Xej+t(y), Xt(x
k
j )) <

ε

2k
,
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and∥∥∥ ∫ tk

0

ϕ(Xej+r(y)) d r − tku
∥∥∥ ≤ ∥∥∥∫ tk

0

ϕ(Xej+r(y)) d r −
∫ tk

0

ϕ(Xr(x
k
j )) d r

∥∥∥
+
∥∥∥ ∫ tk

0

ϕ(Xr(x
k
j )) d r − tku

∥∥∥(5)

≤ tk

(
var(ϕ,

ε

2k
) + δk

)
for every j = 1, 2, . . . , Nk − 1.

On the other hand, as ‖u‖ ≤ ‖ϕ‖∞, we also have that∥∥∥∫ pkj

0

ϕ(Xej+tk+r(y)) d r − pkju
∥∥∥ ≤ Kk(‖ϕ∞‖+ ‖u‖) ≤ 2Kk‖ϕ‖∞(6)

for every j = 1, 2, . . . , Nk − 1.
Moreover, decomposing the time interval [0, sk − 1] according to shadowing

times and transition times

[0, sk − 1] =

Nk⋃
j=1

[ej , ej + tk] ∪
Nk−1⋃
j=1

[ej + tk, ej + tk + pkj ].

For times on the intervals [ej , ej + tk] and [ej + tk, ej + tk + pkj ] and using
(5) and (6), respectively, we get∥∥∥ ∫ sk

0

ϕ(Xr(y)) d r − sk u
∥∥∥ ≤ Nktk

(
var
(
ϕ,

ε

2k

)
+ δk

)
+ (Nk − 1)2Kk‖ϕ‖∞

as desired. �

The next lemma proves that Birkhoff averages of points in R oscillate be-
tween the vectors u and v.

Lemma 4.4. For every k ≥ 1 the following hold:
(i) If k is odd and z ∈ Lk(q), then

1

lk

∥∥∫ lk

0

ϕ(Xr(z)) d r − u
∥∥→ 0 as k →∞;

(ii) If k is even and z ∈ Lk(q), then

1

lk

∥∥∫ lk

0

ϕ(Xr(z)) d r − v
∥∥→ 0 as k →∞.

Proof. (i) Fix k ≥ 0 odd. Let z = z(z0, y(xk)) ∈ Lk(q), y = y(xk) and

lk = lk−1 + pk0 + sk be given as on the definition of Lk(q). Then,

d(Xlk−1+pk0+t(z), Xt(y)) ≤ ε

2k

for every t ∈ [0, sk].



348 H. L. DE SANTANA

Hence,∥∥∥∫ lk

0

ϕ(Xr(z)) d r − lk u
∥∥∥ ≤ ∥∥∥∫ lk−1+pk0

0

ϕ(Xr(z)) d r − (lk−1 + pk0) u
∥∥∥

+
∥∥∥∫ lk

lk−1+pk0

ϕ(Xr(z)) d r − sk u
∥∥∥

≤
∥∥∥∫ sk

0

ϕ(Xlk−1+pk0+r(z)) d r − sk u
∥∥∥

+ 2(lk−1 + pk0)‖ϕ‖∞

≤
∥∥∥∫ sk

0

ϕ(Xlk−1+pk0+r(z)) d r −
∫ sk

0

ϕ(Xr(y)) d r
∥∥∥

+
∥∥∥∫ sk

0

ϕ(Xr(y)) d r − sk u
∥∥∥

+ 2(lk−1 + pk0)‖ϕ‖∞.

Dividing the previous expression by lk and appealing Lemma 4.3 we obtain
that

1

lk

∥∥∥∫ lk

0

ϕ(Xr(z)) d r − u
∥∥∥ ≤ sk

lk
var
(
ϕ,

ε

2k

)
+

2(lk−1 + pk0)‖ϕ‖∞
lk

+
Nktk

(
var(ϕ, ε

2k ) + δk

)
+ 2(Nk − 1)Kk‖ϕ‖∞

lk

which, by (3) and (1), converges to zero as k → ∞ because
sk
lk
≤ 1,

Nktk
lk
≤ 1

and

lk−1 + pk0
lk

≤
N0 t0 +

∑k
j=1Nj(tj +Kj) +Kk

lk
→ 0

as k → ∞. This proof the item (i). Since the proof of item (ii) is completely
analogous we shall omit it. �

We are now able to prove that R(x, ε) ⊂ Iϕ ∩∆ for every small ε > 0 and
every q ∈ D. Let x ∈ R(x, ε), then there is an even integer number k such

that x ∈ B̃lk(z, ε/2k) for some z ∈ Lk(q). Note that z = z(z0, y(xk)) satisfies

d(Xt(z), Xt(x)) < ε
2k for all t ∈ [0, lk], by definition (4). On the other hand,

since that z0 ∈ Lk−1 we obtain that d(Xt(z), Xt(z0)) < ε
2k for all t ∈ [0, lk−1].

Therefore, d(Xt(x), Xt(z0)) < ε
2k−1 , for all t ∈ [0, lk−1 − 1]. It follows that∥∥∥ ∫ lk−1

0

ϕ(Xr(x)) d r − lk−1u
∥∥∥

≤
∥∥∥ ∫ lk−1

0

ϕ(Xr(x)) d r −
∫ lk−1

0

ϕ(Xr(z0)) d r
∥∥∥
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+
∥∥∥∫ lk−1

0

ϕ(Xr(z0)) d r − lk−1u
∥∥∥

≤ lk−1 var
(
ϕ,

ε

2k

)
+
∥∥∥∫ lk−1

0

ϕ(Xr(z0)) d r − lk−1u
∥∥∥.

Using Lemma 4.4 we get that∥∥∥ 1

lk−1

∫ lk−1

0

ϕ(Xr(x)) d r − u
∥∥∥→ 0 as k →∞,

therefore ∥∥∥ 1

lk−1

∫ lk−1

0

ϕ(Xr(x)) d r − u
∥∥∥→ 0 as k →∞.

In the similar way, if k is odd, we can proves that
∥∥∥ 1
lk

∫ lk
0
ϕ(Xr(x)) d r− v

∥∥∥→
0 as k → ∞. This proves that x ∈ Iϕ ∩∆ and therefore R(q, ε) ⊂ Iϕ ∩∆ and
consequently R ⊂ Iϕ ∩∆.

4.2. Proof of Theorem 2.2

We need some preparatory notions and results. Let (Xt)t be a suspension
flow defined over a continuous map f : M → M and Φ : M → Rd be a
continuous observable. The set of points with historic behaviour with respect
to Φ is defined by

ÎΦ =

{
(x, s) ∈Mr : lim

T→∞

1

T

∫ T

0

Φ(Xt(x, s)) dt does not exist and 0 ≤ s ≤ r(x)

}
.

The following lemma gives another description for the set of points with
historic behavior for suspension flows.

Lemma 4.5. Let M be a compact metric space, f : M →M be an homeomor-
phism and r : M → (0,∞) be a continuous roof function bounded away from
zero. Suppose that (Xt)t is the suspension flow over f with roof function r. If

Φ : Mr → Rd is a continuous observable and ϕ(x) =
∫ r(x)

0
Φ(x, t) dt, then

lim
T→+∞

1

T

∫ T

0

Φ(Xt(x, s))dt = lim
n→∞

∑n−1
i=0 ϕ(f i(x))∑n−1
i=0 r(f

i(x))
.

Proof. Let (Xt)t, f and Φ be as in the hypothesis. Given (x, s) ∈ Mr and
T > 0. There is n ∈ N such that T = rn(x) + a and 0 ≤ a < r(fn(x)). Note

that r satisfies rn(x) =
∑n−1
i=0 r ◦ f i(x). Thus, since r is bounded away from

zero

lim
T→+∞

1

T

∫ T

0

Φ(Xt(x, s)) dt = lim
n→+∞

1

rn(x) + a

∫ rn(x)+a

0

Φ(Xt(x, s)) d t

= lim
n→+∞

1

rn(x)

∫ rn(x)

0

Φ(Xt(x, s)) d t
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= lim
n→+∞

1

rn(x)

n−1∑
i=0

∫ r(fj(x))

0

Φ(Xt(f
i(x), t)) dt

= lim
n→∞

∑n−1
i=0 ϕ(f i(x))∑n−1
i=0 r(f

i(x))
.

This proves the lemma. �

The previous lemma ensures that there is a relationship between ÎΦ and the
set

Îϕ,r =

{
x ∈M : lim

n→∞

∑n−1
i=0 ϕ(f i(x))∑n−1
i=0 r(f

i(x))
does not exist

}
.

The following result, whose proof follows through an argument of [12], shows
that the set of points with historic behavior is non-empty of a suspension flow
over a homeomrphisms with gluing orbit property is large from the topological
viewpoint. A similar result was proved by Barreira, Li and Valls in [3] under
weak specification property.

Theorem 4.6. Let M be a compact metric space, f : M →M be a homeomor-
phism with the gluing orbit property, ψ : M → Rd be continuous observable,
ϕ as in the lemma above and r : M → (0,∞) be a continuous roof function.

Then, Îϕ,r is either empty or a Baire residual subset and carries full topolog-

ical pressure on M . In other words, if Îϕ,r is not empty, then Îϕ,r is a Baire
residual subset of M and PÎϕ,r

(f, ψ) = P (f, ψ).

The proof of the previous theorem is similar to the proof of Theorem E in

[12]. First, the proof that Îϕ,r is either empty or a Baire residual subset of M
follow the replacement the family of sets P (w, δ, n), in the proof of Theorem D
in [12], by {

x ∈ M :

∥∥∥∥∥
∑n−1
i=0 ϕ(f i(x))∑n−1
i=0 r(f

i(x))
− w

∥∥∥∥∥ < δ
}

and to use Hopf Ergodic Theorem for quotients of Birkhoff averages we obtain

that Îϕ,r is either empty or a Baire residual. Analogously, the proof that Îϕ,r
is either empty or carries full topological entropy follow the replacement

n−1∑
i=0

ϕ(f i(x)) and

∫
ϕ(x) dµi

in the proof of Theorem E of [12], by∑n−1
i=0 ϕ(f i(x))∑n−1
i=0 r(f

i(x))
and

∫
ϕ(x) dµi∫
r(x) dµi

respectively and to use Hopf Ergodic Theorem for quotients of Birkhoff average
again. We also need of the following auxiliary result.
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Theorem 4.7 ([18, Theorem 5.8]). Let (M,d) be a compact metric space,
f : M → M be a homeomorphism and r : M → (0,∞) be a continuous
roof function. Let (Xt)t be a suspension flow over f acting in Mr. For an
arbitrary Borel set Z ⊂ M , define Zr := {(z, s) : z ∈ Z, 0 ≤ s < r(s)}. If
β = sup{t > 0: PZ(f,−tr) > 0}, then hZr

((Xt)t) ≥ β.

Finally, we are in position to prove Theorem 2.2.

Proof of Theorem 2.2. Lemma 4.5 allow us to obtain results for ÎΦ from a

corresponding results about the set Îϕ,r, using that ÎΦ =
⋃
t∈R{Xt(x, 0) : x ∈

Îϕ,r}. If Îϕ,r is empty we are done, so we suppose that Îϕ,r is not empty.

Theorem 4.6 implies that Îϕ,r is a Baire residual subset of M , and so M \ Îϕ,r =
∪iFi is contained in a countable union of closed sets Fi with empty interior.
Then we observe that

Mr \ ÎΦ =
(⋃
i

{
Xt(x, 0) : x ∈ Fi, t ∈ [0, r(x)]

})
/ ≈

is meager as well, and so ÎΦ is a Baire generic subset of Mr.

We now consider the topological entropy of ÎΦ. It is well known that β =
htop((Xt)t) is the unique number so that P (f,−tr) = 0. Theorem 4.6 implies
that P (f,−tr) = PÎϕ,r

(f,−tr) for all t ∈ R. Hence we conclude htop((Xt)t)

is the unique zero of the pressure function t 7→ PÎϕ,r
(f,−tr). This, together

with Theorem 4.7 and the previous relation between Îϕ,r and ÎΦ, implies that
hÎΦ((Xt)t) ≥ htop((Xt)t). As the other inequality always holds we conclude

that hÎΦ((Xt)t) = htop((Xt)t). This proves Theorem 2.2. �
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