• Title/Summary/Keyword: magnetotransport

Search Result 50, Processing Time 0.023 seconds

Effect of Tin Codoping on Transport and Magnetic Properties of Chromium-doped Indium Oxide Films

  • Kim, Hyo-Jin;Kim, Hyoun-Soo;Kim, Do-Jin;Ihm, Young-Eon;Choo, Woong-Kil;Hwang, Chan-Yong
    • Journal of Magnetics
    • /
    • v.13 no.3
    • /
    • pp.88-91
    • /
    • 2008
  • This study examined the effect of Sn co-doping on the transport and magnetic properties of Cr-doped $In_2O_3$ thin films grown on (100) silicon substrates by pulsed laser deposition. The experimental results showed that Sn co-doping enhances the magnetization and appearance of the anomalous Hall effect, and increases the carrier (electron) concentration. These results suggest that the conduction carrier plays an important role in enhancing the ferromagnetism of a laser-deposited Cr-doped $In_2O_3$ film, which may have applications in transparent oxide semiconductor spin electronics devices.

The Effect of $ZrO_2-Y_2O_3\;(YSZ)$ Buffer Layer on Layer on Low-Field Magnetoresistance of LSMO Thin Films ($ZrO_2-Y_2O_3\;(YSZ)$ 중간층이 저 자장영역에서의 LSMO 박막의 자기저항 특성에 미치는 영향)

  • 심인보;오영제;최세영
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.306-311
    • /
    • 1999
  • $La_{2/3}Sr_{1/3}MnO_3(LSMO)/YSZ/SiO_2/Si(100)$ polycrystalline thin films were fabricated be chelated sol-gel method The effect of YSZ buffer layer at low field (120 Oe) spin-polarized tunneling magnetotransport (TMR) properties of LSMO thin film was studied at room temperature. Single perovskite LSMO thin films was obtained. The maximum TMR ratio was increased from 0.2 to 0.42 % by the insertion of YSZ buffer. YSZ as diffusion barrier was attributed to the fine microstructure of LSMO thin films and the reduction of dead layer between LSMO and $SiO_2/Si(100)$ interfaces.

  • PDF

Thermal Stability and Domain Structure in Spin Valve Films with IrMn Exchange Biased Layers (IrMn 교환결합층을 갖는 스핀밸브막에서의 열적안정성과 자구구조 관찰)

  • Lee Byeong-Seon;Jung Jung-Gyu;Lee Chang-Gyu;Koo Bon-Heun;Hayashi Yasunori
    • Korean Journal of Materials Research
    • /
    • v.14 no.2
    • /
    • pp.94-100
    • /
    • 2004
  • We have investigated the magnetic domain structure and the thermal stability of magnetotransport properties of IrMn biased spin-valves containing Co, CoFe and NiFe. The magnetic domain structures were imaged using a magneto-optical indicator film(MOIF) technique. To investigate the thermal stability, magnetoresistance(MR) was measured at annealing temperature(TANN) and room temperature($T_{RT}$) followed by the annealing. Domain imaging reveal that the increase of annealing temperature led to changes in the exchange coupling between the two ferromagnet(FM) layers through nonmagnetic layer rather than between FM and antiferromagnet. unlike the NiFe biased IrMn spin valve with large domains, MOIF pictures of Co and CoFe biased IrMn spin valve structures show the formation of many small microdomains. The magnetic structure, as revealed by the domain images, appeared unchanged while the MR dropped dramatically. From the combined giant magnetoresistance(GMR) and MOIF results, it was apparent that the decrease of MR ratio was not related to the spin valve magnetic structure up to about $350^{\circ}C$($T_{RT}$ ).

Magneto-transport Properties of La0.7Sr0.3Mn1+dO3-Manganese Oxide Composites Prepared by Liquid Phase Sintering

  • Kim, Hyo-Jin;You, Jae-Hyoung;Choi, Soon-Mi;Yoo, Sang-Im
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.221-226
    • /
    • 2014
  • Significantly enhanced low-field magnetoresistance (LFMR) and maximum dMR/dH {$(dMR/dH)_{max}$} values were successfully achieved from $La_{0.7}Sr_{0.3}MnO_3$(LSMO)-manganese oxide composite samples prepared by liquid phase sintering, compared with those of the same composites prepared by solid state reaction. For this study, pure LSMO and LSMO-manganese oxide composites with various nominal compositions of (1-x)LSMO-$xMn_2O_3$ (x = 0.1, 0.2, 0.3, 0.4, and 0.8) were sintered at $1450^{\circ}C$, above the eutectic temperature of $1430^{\circ}C$, for 1 h in air. The highest LFMR value of 1.28% with the highest $(dMR/dH)_{max}$ value of 21.1% $kOe^{-1}$ was obtained from the composite sample with x = 0.3 at 290 K in 500 Oe. This enhancement of LFMR and $(dMR/dH)_{max}$ values is ascribed to efficient suppression of magnetic disorder at the LSMO grain boundary, by forming a characteristic LSMO-manganese eutectic structure.

Junction Size Dependence of Magnetic and Magnetotransport Properties in MTJs (자기터널절합에서 자기 및 자기저항의 접합크기 의존성)

  • Sankaranarayanan, V.K.;Hu, Yong-kang;Kim, Cheol-Gi;Kim, Chong-Oh;Lee, Hee-bok
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.369-373
    • /
    • 2003
  • Magneto-optic Kerr Effect(MOKE), AFM and magnetoresistance measurements have been carried out on as-deposited and annealed Magnetic Tunnel Junctions(MTJs) with junction sizes 180, 250, 320 and 380 $\mu\textrm{m}$ in order to investigate the correlation among interlayer exchange coupling, surface roughness and junction size. Relatively irregular variations of coercivity $H_{c}$ (∼17.5 Oe) and interlayer exchange coupling $H_{E}$ (∼17.5 Oe) are observed over the junction in as-deposited sample prepared by DC magnetron sputtering. After annealing at $200^{\circ}C$, $H_{c}$ decreases to 15 Oe, while $H_{ E}$ increases to 20 Oe with smooth local variation. $H_{E}$ shows very good correlation with surface roughness across the junction in agreement with Neel's orange peel coupling. The increasing slope per $\mu\textrm{m}$ of normalized $H_{c}$ and $H_{E}$ are same near junction edge along free-layer direction irrespective of junction size, giving relatively uniform $H_{c}$ and $H_{ E}$ for wider junction size. Thickness profiles of the junctions measured with $\alpha$-step show increasingly flat top surface for larger junctions, indicating better uniformity for large. junctions in agreement with the normalized$ H_{c}$ and H$/_{E}$ curves. TMR ratios also increase with increasing junction size, indicating improvement for larger uniform junctions.

Electrical Transport and Magnetoresistance of La0.67Ca0.33MnO3: Agx (x = 0, 0.1, 0.2, 0.3, 0.4) Composites

  • Gencer, H.;Pektas, M.;Babur, Y.;Kolat, V.S.;Izgi, T.;Atalay, S.
    • Journal of Magnetics
    • /
    • v.17 no.3
    • /
    • pp.176-184
    • /
    • 2012
  • The structural, magnetic and magnetotransport properties of $La_{0.67}Ca_{0.33}MnO_3$: $Ag_x$ (x = 0, 0.1, 0.2, 0.3 and 0.4) composites were investigated systematically. X-ray and EDX analysis indicated that Ag is not substituted into the main $La_{0.67}Ca_{0.33}MnO_3$ phase and remains an additive to the second phase at the grain boundary. The Curie temperature first decreased from 269 K for x = 0 to 257 K for x = 0.1 and then remained nearly unchanged with increasing Ag content. For the x > 0.1 samples, a second transition temperature ($T_{MI2}$) was observed in the resistance curves. At temperatures below 150 K, a significant enhancement in MR was observed while high temperature MR decreased with increasing Ag content. The maximum MR was observed to be 55% in the x = 0.4 sample at 10 K and a 6T magnetic field, this value is larger than that of pure $La_{0.67}Ca_{0.33}MnO_3$ (53% at 265 K and 6 T). In addition, at low fields (H < 1T), a sharp increase in the MR was observed.

Magnetic Tunnel Junctions with AlN and AlO Barriers

  • Yoon, Tae-Sick;Yoshimura, Satoru;Tsunoda, Masakiyo;Takahashi, Migaku;Park, Bum-Chan;Lee, Young-Woo;Li, Ying;Kim, Chong-Oh
    • Journal of Magnetics
    • /
    • v.9 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • We studied the magnetotransport properties of tunnel junctions with AlO and AlN barriers fabricated using microwave-excited plasma. The plasma nitridation process provided wider controllability than the plasma oxidization for the formation of MTJs with ultra-thin insulating layer, because of the slow nitriding rate of metal Al layers, comparing with the oxidizing rate of them. High tunnel magnetoresistance (TMR) ratios of 49 and 44% with respective resistance-area product $(R{\times}A) of 3 {\times} 10^4 and 6 {\times} 10^3 {\Omega}{\mu}m^2$ were obtained in the Co-Fe/Al-N/Co-Fe MTJs. We conclude that AlN is a hopeful barrier material to realize MTJs with high TMR ratio and low $R{\times}A$ for high performance MRAM cells. In addition, in order to clarify the annealing temperature dependence of TMR, the local transport properties were measured for Ta $50{\AA} /Cu 200 {\AA}/Ta 50 {\AA}/Ni_{76}Fe_{24} 20 {\AA}/Cu 50 {\AA}/Mn_{75}Ir_{25} 100 {\AA}/Co_{71}Fe_{29} 40 {\AA}/Al-O$ junction with $d_{Al}= 8 {\AA} and P_{O2}{\times}t_{0X}/ = 8.4 {\times} 10^4$ at various temperatures. The current histogram statistically calculated from the electrical current image was well in accord with the fitting result considering the Gaussian distribution and Fowler-Nordheim equation. After annealing at $340^{\circ}C$, where the TMR ratio of the corresponding MTJ had the maximum value of 44%, the average barrier height increased to 1.12 eV and its standard deviation decreased to 0.1 eV. The increase of TMR ratio after annealing could be well explained by the enhancement of the average barrier height and the reduction of its fluctuation.

Magnetic Properties of Mn-substituted Magnetite Thin Films (망간 치환된 마그네타이트 박막의 자기적 특성 연구)

  • Lee, Hee-Jung;Kim, Kwang-Joo
    • Journal of the Korean Vacuum Society
    • /
    • v.16 no.4
    • /
    • pp.262-266
    • /
    • 2007
  • Polycrystalline $Mn_xFe_{3-x}O_4$ thin films were synthesized on Si(100) substrates using sol-gel method and the effects of Mn substitution on the structural, magnetic, and magnetotransport properties were analyzed. X-ray diffraction revealed that cubic structure is maintained up to x = 1.78 with increasing lattice constant for increasing x. Such increase of the lattice constant is attributable to the substitution of $Mn^{2+}$ (with larger ionic radius) ions into tetrahedral $Fe^{3+}$(with smaller ionic radius) sites. VSM measurements revealed that $M_s$ does not vary significantly with x, qualitatively explainable by comparing spin magnetic moments of Mn and Fe ions. On the other hand, $H_c$ was found to decrease with increasing x, attributable to the decrease of magnetic anisotropy due to the decrease of $Fe^{2+}$ density through $Mn^{2+}$ substitution. Magnetoresistance (MR) of the $Mn_xFe_{3-x}O_4$ films was found to decrease with increasing x. Analysis of the MR data in comparison with the VSM results gives an indication of the tunneling of spin-polarized carriers through the grain boundaries of the polycrystalline samples at low external field and spin-flip of the carriers at high external field.

Annealing Effect on Magneto-transport Properties of Amorphous Ge1-xMnx Semiconductor Thin Films (비정질 Ge1-xMnx 박막의 자기수송특성에 미치는 열처리 효과)

  • Kim, Dong-Hwi;Lee, Byeong-Cheol;Lan Anh, Tran Thi;Ihm, Young-Eon;Kim, Do-Jin;Kim, Hyo-Jin;Yu, Sang-Soo;Baek, Kui-Jong;Kim, Chang-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.19 no.4
    • /
    • pp.121-125
    • /
    • 2009
  • Amorphous $Ge_1$_$_xMn_x$ semiconductor thin films grown by low temperature vapor deposition were annealed at various temperatures from 400 to $700^{\circ}C$ for 3 minutes in high vaccum chamber. The electrical and magnetotransport properties of as-grown and annealed samples have been studied. X-ray diffraction patterns analysis revealed that the samples still maintain amorphous state after annealling at $500^{\circ}C$ for 3 minutes and they were crystallized when annealing temperature increase to $600^{\circ}C$. Temperature dependence of resistivity measurement implied that as-grown and annealed $Ge_1$_$_xMn_x$ films have semiconductor characteristics, the increase of resistivity with annealling temperature was obseved. The $700^{\circ}C$-annealed sample exhibited negative magnetoresistance (MR) at low temperatures and the MR ratio was ${\sim}$8.5% at 10 K. The asymmetry was present in all MR curves. The anomalous Hall Effect was also observed at 250 K.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF