Browse > Article
http://dx.doi.org/10.4283/JKMS.2009.19.4.121

Annealing Effect on Magneto-transport Properties of Amorphous Ge1-xMnx Semiconductor Thin Films  

Kim, Dong-Hwi (Chungnam National University)
Lee, Byeong-Cheol (Chungnam National University)
Lan Anh, Tran Thi (Chungnam National University)
Ihm, Young-Eon (Chungnam National University)
Kim, Do-Jin (Chungnam National University)
Kim, Hyo-Jin (Chungnam National University)
Yu, Sang-Soo (Samsung Techwin Co., Ltd)
Baek, Kui-Jong (Technosemichem Co., Ltd)
Kim, Chang-Soo (Korea Research Institute of Standards and Science)
Abstract
Amorphous $Ge_1$_$_xMn_x$ semiconductor thin films grown by low temperature vapor deposition were annealed at various temperatures from 400 to $700^{\circ}C$ for 3 minutes in high vaccum chamber. The electrical and magnetotransport properties of as-grown and annealed samples have been studied. X-ray diffraction patterns analysis revealed that the samples still maintain amorphous state after annealling at $500^{\circ}C$ for 3 minutes and they were crystallized when annealing temperature increase to $600^{\circ}C$. Temperature dependence of resistivity measurement implied that as-grown and annealed $Ge_1$_$_xMn_x$ films have semiconductor characteristics, the increase of resistivity with annealling temperature was obseved. The $700^{\circ}C$-annealed sample exhibited negative magnetoresistance (MR) at low temperatures and the MR ratio was ${\sim}$8.5% at 10 K. The asymmetry was present in all MR curves. The anomalous Hall Effect was also observed at 250 K.
Keywords
magnetic semiconductor; spintronics materials; Ge-Mn intermetallic compounds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Cho, S. Choi, S. C. Hong, Y. Kim, J. B. Ketterson, B. J. Kim, Y. C. Kim, and J. H. Jung, Phys. Rev., B66, 033303 (2002).   DOI   ScienceOn
2 N. Yamada, J. Phys. Soc. Japan., 59, 273 (1990).   DOI
3 Y. D. Park, A. T. Hanbicki, S. C. Erwin, C. S. Hellberg, J. M. Sullivan, J. E. Mattson, T. F. Ambrose, A. Wilson, G. Spanos, and B. T. Jonker, Science, 295, 651 (2002).   DOI   ScienceOn
4 N. Pinto, L. Morresi, R. Gunnella, R. Murri, F. D'Orazio, F. Lucari, S. Santucci, P. Picozzi, A. Verna, and M. Passacantando, J. Mater. Sci.: Mater. Electrons, 14, 337 (2003).   DOI   ScienceOn
5 Y. M. Cho, S. S. Yu, Y. E. Ihm, D. Kim, H. Kim, J. S. Baek, C. S. Kim, and B. T. Lee, J. Magn. Magn. Mater., 282, 385 (2004).   DOI   ScienceOn
6 A. Stroppa, S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev., B68, 155203 (2003).   DOI   ScienceOn
7 R. J. Weiss and A. S. Marotta, J. Phys. Chem. Solids, 9, 302 (1959).   DOI   ScienceOn
8 S. von Molnar and T. Kasuya, Phys. Rev. Lett., 21, 1757 (1968).   DOI
9 J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, and G. Borghs, Appl. Phys. Lett., 68, 2744 (1996).   DOI
10 S. S. Yu, T. T. L. Anh, Y. E. Ihm, D. Kim, H. Kim, S. Oh, C. S. Kim, and H. Ryu, Solid State Communications, 134 (2005).
11 Y. J Zhao, T. Shishidou, and A. J. Freeman, Phys. Rev. Lett., 90, 047204 (2003).   DOI   ScienceOn