DOI QR코드

DOI QR Code

Electrical Transport and Magnetoresistance of La0.67Ca0.33MnO3: Agx (x = 0, 0.1, 0.2, 0.3, 0.4) Composites

  • Gencer, H. (Department of Physics, Science and Arts Faculty, Inonu University) ;
  • Pektas, M. (Department of Physics, Science and Arts Faculty, Inonu University) ;
  • Babur, Y. (Department of Physics, Science and Arts Faculty, Harran University) ;
  • Kolat, V.S. (Department of Physics, Science and Arts Faculty, Inonu University) ;
  • Izgi, T. (Department of Physics, Science and Arts Faculty, Inonu University) ;
  • Atalay, S. (Department of Physics, Science and Arts Faculty, Inonu University)
  • Received : 2012.05.03
  • Accepted : 2012.07.30
  • Published : 2012.09.30

Abstract

The structural, magnetic and magnetotransport properties of $La_{0.67}Ca_{0.33}MnO_3$: $Ag_x$ (x = 0, 0.1, 0.2, 0.3 and 0.4) composites were investigated systematically. X-ray and EDX analysis indicated that Ag is not substituted into the main $La_{0.67}Ca_{0.33}MnO_3$ phase and remains an additive to the second phase at the grain boundary. The Curie temperature first decreased from 269 K for x = 0 to 257 K for x = 0.1 and then remained nearly unchanged with increasing Ag content. For the x > 0.1 samples, a second transition temperature ($T_{MI2}$) was observed in the resistance curves. At temperatures below 150 K, a significant enhancement in MR was observed while high temperature MR decreased with increasing Ag content. The maximum MR was observed to be 55% in the x = 0.4 sample at 10 K and a 6T magnetic field, this value is larger than that of pure $La_{0.67}Ca_{0.33}MnO_3$ (53% at 265 K and 6 T). In addition, at low fields (H < 1T), a sharp increase in the MR was observed.

Keywords

References

  1. A. P. Nosov, V. G. Vasilev, E. V. Vladimirova, E. V. Mikhaleva, B. V. Slobodin, and V. V. Ustinov, Russian J. Nondestructive Testing 37, 181 (2001). https://doi.org/10.1023/A:1016713116740
  2. L. Balcells, E. Calvo, and J. Fontcuberta, J. Magn. Magn. Mater. 242, 1166 (2002). https://doi.org/10.1016/S0304-8853(01)01292-6
  3. A. P. Ramirez, J. Phys.: Condens. Matter. 9, 8171 (1997). https://doi.org/10.1088/0953-8984/9/39/005
  4. M. Kawasaki, M. Izumi, Y. Konishi, T. Manako, and Y. Tokura, Mater. Sci. Eng. B 63, 49 (1999). https://doi.org/10.1016/S0921-5107(99)00051-3
  5. V. S. Kolat, H. Gencer, and S. Atalay, Physica B 371, 199 (2006). https://doi.org/10.1016/j.physb.2005.09.036
  6. C. N. R. Rao and A. K. Cheetham, Science 272, 369 (1996). https://doi.org/10.1126/science.272.5260.369
  7. V. S. Kolat, H. Gencer, M. Gunes, and S. Atalay, Mater. Sci. Eng. B 140, 212 (2007). https://doi.org/10.1016/j.mseb.2007.05.002
  8. M. H. Phan and S. C. Yu, J. Magn. Magn. Mater. 308, 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025
  9. V. S. Kolat, T. zgi, A. O. Kaya, H. Gencer, N. Bayri, and S. Atalay, J. Magn. Magn. Mater. 322, 427 (2010). https://doi.org/10.1016/j.jmmm.2009.09.071
  10. H. Gencer, V. S. Kolat, and S. Atalay, J. Alloy. Compd. 422, 40 (2006). https://doi.org/10.1016/j.jallcom.2005.12.005
  11. A. Gupta, G. Q. Gong, G. Xiao, P. R. Duncombe, P. Lecoeur, P. Trouilloud, Y. Y. Wang, V. P. Dravid, and J. Z. Sun, Phys. Rev. B 54, R15629 (1996). https://doi.org/10.1103/PhysRevB.54.R15629
  12. M. Gunes, H. Gencer, V. S. Kolat, S. Vural, H. I. Mutlu, and S. Atalay, Mater. Sci. Eng. B 136, 41 (2007). https://doi.org/10.1016/j.mseb.2006.08.052
  13. J. M. D. Coey, J. Appl. Phys. 85, 5576 (1999). https://doi.org/10.1063/1.369899
  14. T. Zhu, B. G. Shen, J. R. Sun, H. W. Zhao, and W. S. Zhan, Appl. Phys. Lett. 78, 3863 (2001). https://doi.org/10.1063/1.1379597
  15. V. P. S. Awana, R. Tripathi, S. Balamurugan, H. Kishan, and E. T. Muromachi, Solid State Commun. 140, 410 (2006). https://doi.org/10.1016/j.ssc.2006.09.021
  16. S. Pal, A. Banerjee, S. Chatterjee, A. K. Nigam, B. K. Chaudhuri, and H. D. Yang, J. Appl. Phys. 94, 3485 (2003).
  17. X. B. Yuan, Y. H. Liu, N. Yin, C. J. Wang, and L. M. Mei, J. Magn. Magn. Mater. 306, 167 (2006). https://doi.org/10.1016/j.jmmm.2006.02.238
  18. R. Tripathi, V. P. S. Awana, H. Kishan, S. Balamurugan, and G. L. Bhalla, J. Supercond. Nov. Magn. 21, 151 (2008). https://doi.org/10.1007/s10948-008-0310-7
  19. N. Panwar, D. K. Pandya, and S. K. Agarwal, J. Phys.: Condens. Matter. 19, 456224 (2007). https://doi.org/10.1088/0953-8984/19/45/456224
  20. R. Tripathi, V. P. S. Awan, N. Panwar, G. L. Bhalla, H. U. Habermier, S. K. Agarwal, and H. Kishan, J. Phys. D: Appl. Phys. 42, 175002 (2009). https://doi.org/10.1088/0022-3727/42/17/175002
  21. R Tripathia, V. P. S. Awana, H. Kishana, and G. L. Bhalla, J. Magn. Magn. Mater. 320, L89 (2008). https://doi.org/10.1016/j.jmmm.2008.01.039
  22. X. X. Zhang, J. Tejeda, Y. Xin, G. F. Sun, K. W. Wong, and X. Bohigas, Appl. Phys. Lett. 69, 3596 (1996). https://doi.org/10.1063/1.117218
  23. L. Pi, M. Hervieu, A. Maignan, C. Martin, and B. Raveau, Solid State Commun. 126, 229 (2003). https://doi.org/10.1016/S0038-1098(02)00890-6
  24. M. Battabyal and T. K. Dey, J. Phys. Chem. Solids 65, 1895 (2004). https://doi.org/10.1016/j.jpcs.2004.06.014
  25. Y. K. Lakshmi and P. V. Reddy, J. Magn. Magn. Mater. 321, 1240 (2009). https://doi.org/10.1016/j.jmmm.2008.11.012
  26. Q. Y. Xu, R. P. Wang, Z. Zhang, Phys. Rev. B 71, 092401 (2005). https://doi.org/10.1103/PhysRevB.71.092401
  27. C. Shuiyuan, Y. Qingying, L. Heng, H. Shangbo, and H. Zhigao, J. Rare Earths 24, 788 (2006). https://doi.org/10.1016/S1002-0721(07)60030-1
  28. S. Chen, H. Lai, Y. Lin, W. Ke, F. Zheng, Z. Huang, and Y. Du, J. Magn. Magn. Mater. 303, e308 (2006). https://doi.org/10.1016/j.jmmm.2006.01.234
  29. J. H. Miao, S. L. Yuan, X. Xiao, G. M. Ren, G. Q. Yu, Y. Q. Wang, and S. Y. Yin, J. Appl. Phys. 101, 043904 (2007). https://doi.org/10.1063/1.2434807
  30. Y. H. Huang, K. F. Huang, F. Luo, L. L. He, Z. M. Wang, C. S. Liao, and C. H. Yana, J. Solid State Chem. 174, 257 (2003). https://doi.org/10.1016/S0022-4596(03)00212-3
  31. S. Mercone, C. A. Perroni, V. Cataudella, C. Adamo, M. Angeloni, C. Aruta, G. De Filippis, F. Miletto, A. Oropallo, P. Perna, A. Yu. Petrov, U. S. Uccio, and L. Maritato, Phys. Rev. B 71, 064415 (2005). https://doi.org/10.1103/PhysRevB.71.064415
  32. A. Gaur and G. D. Varma, J. Alloy. Compd. 453, 423 (2008). https://doi.org/10.1016/j.jallcom.2006.11.132
  33. Y. H. Xiong, X. C. Bao, J. Zhang, C. L. Sun, W. H. Huang, X. S. Li, Q. J. Ji, X. W. Cheng, Z. H. Peng, N. Lin, Y. Zeng, Y. F. Cui, and C. S. Xiong, Physica B 398, 102 (2007). https://doi.org/10.1016/j.physb.2007.05.005
  34. H. Y. Hwang, S. W. Cheong, N. P. Ong, and B. Batlogg, Phys. Rev. Lett. 77, 2041 (1996). https://doi.org/10.1103/PhysRevLett.77.2041

Cited by

  1. manganites vol.5, pp.3, 2015, https://doi.org/10.1039/C4RA11323C
  2. Effect of small quantity of chromium on the electrical, magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn0.98Cr0.02O3 manganite vol.122, pp.3, 2016, https://doi.org/10.1007/s00339-016-9780-9
  3. Physical properties of Ag/Ca doped Lantanium manganite vol.29, pp.23, 2018, https://doi.org/10.1007/s10854-018-0143-5