• Title/Summary/Keyword: magnetic tunnel junction

Search Result 133, Processing Time 0.027 seconds

Characteristics of Magnetic Tunnel Junctions Incorporating Nano-Oxide Layers (나노 산화층을 사용한 자기터널접합의 특성)

  • Chu, In-Chang;Chun, Byong-Sun;Song, Min-Sung;Lee, Seong-Rae;Kim, Young-Keun
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.2
    • /
    • pp.136-139
    • /
    • 2006
  • The tunneling magnetoresistance (TMR) ratios of magnetic tunnel junctions (MTJs), in general, decrease abruptly above 250$^{\circ}C$ due to Mn interdiffusion from an antiferromagnet IrMn layer to a ferromagnetic CoFe and/or a tunnel barrier. To improve thermal stability, we prepared MTJs with nano-oxide layers. Using a MTJ structure consisting of underlayer CoNbZr 4/bufferlayer CoFe 10/antiferromaget IrMn 7.5/pinned layer CoFe 3/tunnel barrier AlO/freelayer CoFe 3/capping CoNbZr 2 (nm), we placed a nano-oxide layer (NOL) into the underlayer or bufferlayer. Then, the thermal, structural and magneto-electric properties were measured. The TMR ratio, surface flatness, and thermal stability of the MTJs with NOLs were promoted.

Junction Capacitance Dependence of Response Time for Magnetic Tunnel Junction (터널링 자기저항 소자의 접합면 정전용량에 따른 전기적 응답특성)

  • Park, S.Y.;Choi, Y.B.;Jo, S.C.
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.2
    • /
    • pp.68-72
    • /
    • 2002
  • In this research, the effects of capacitance to the access time were studied at the junction area of tunneling magnetoresistance when these were used as memory devices. These results were obtained by applying electric signal input and magnetic field was not used. We applied bipolar square waves of 1MHz to the MTJ samples to obtain the results and time constant ($\tau$) calculated by observing wave responses utilizing an oscilloscope. And time constant was compared with junction area. Each part of MTJ sample, such as electrical pad, lead and contact area, was modeled as an electrical equivalent circuit based on experimental results. For the 200㎛$\times$200㎛ cell, junction capacitance was 90 pF. Also, measurement and simulation results were compared, which showed those similarity.

Improvement of Substrate and Insulationg Layer of FM Magnetic Tunneling Jundtion and the Study of Magnetic Transport (기판과 부도체층을 개선한 $FM/Al_2O_3/FM$ (FM=Ferromagnet) 자기터널링 접합제작 및 자기수송에 관한 연구)

  • 변상진;박병기;장인우;염민수;이재형;이긍원
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.5
    • /
    • pp.245-250
    • /
    • 1999
  • The effect of substrate and oxidization time on $substrate /Py/Al_2O_3/Co\;(Py=Ni_{81}Fe_{19})$ tunnel junction was studied. Samples were prepared without breaking vacuum by changing shadow masks in-situ. The resistance of tunnel junctions increased, but measured MR decreased with oxidization time. Negative MR observed for samples of tunnel resistivity lower than 0.17 M$\Omega$ $({\mu}m)^2$. MR resistivity decreased with the change of substrates in the order of thermally oxidized Si(111), Si(100), Coring Glass 2948, Corning Glass 7059. Sign change and the variation of MR was explained with non uniform current effect.

  • PDF

Characteristics of a Carbon Nanotube-based Tunnel Magnetoresistance Device

  • Kim, Jinhee;Woo, Byung-Chill;Kim, Jae-Ryoung;Park, Jong-Wan;So, Hye-Mi;Kim, Ju-Jin
    • Journal of Magnetics
    • /
    • v.7 no.3
    • /
    • pp.98-100
    • /
    • 2002
  • Tunnel magnetoresistive devices using an individual multi-walled carbon nanotube were fabricated and their low-temperature electrical transport propertiers were investigated. With the ferromagnetic Co electrodes, the multi-walled carbon nanotube exhibited hysteretic magnetoresistance curve at low temperatures. Depending on the temperature and the bias current, the magnetoresistance ratio can be as high as 16% at the temperature of 2.2 K. Such high magnetoresistance ratio indicates a long diffusion length of the multi-walled carbon nanotube.