• Title/Summary/Keyword: magnetic structure

Search Result 2,548, Processing Time 0.032 seconds

High Frequency Properties of Fe93.5Si6.5 Magnetic Powder/Epoxy Composite Film (Fe93.5Si6.5 자성분말/에폭시 복합재 필름의 고주파 특성)

  • Hong, Seon-Min;Kim, Cheol-Gi
    • Journal of the Korean Magnetics Society
    • /
    • v.18 no.5
    • /
    • pp.195-199
    • /
    • 2008
  • Composites of $Fe_{93.5}Si_{6.5}$ powder and epoxy were prepared using a thermal curing process. Scanning electron microscope (SEM), vibrating sample magnetometer (VSM) and network analyzer were used to analyze the structure, electromagnetic properties and microwave absorption of the composites. Results show that the saturation magnetization depends on the fraction of the $Fe_{93.5}Si_{6.5}$ powder in the composite, which affects initial permeability. It is believed that the eddy current loss is a dominant factor over 1 GHz and that the resonance frequency of the composite decreases with increasing fractions of $Fe_{93.5}Si_{6.5}$ powder. Finally, reflection loss was calculated from the permeability and permittivity of these composites. Composite with 50 wt.% $Fe_{93.5}Si_{6.5}$ powder fractions and 5 mm thickness showed reflection loss below -20 dB from 3.66 GHz to 4.16 GHz. Therefore, it is believed that thin Fe-Si/epoxy composites may be a good candidate for microwave absorption application.

Secondary Science Teachers' Perception about and Actual Use of Visual Representations in the Teaching of Electromagnetism (중등 전자기 수업에서 사용하는 시각적 표상에 대한 교사 인식 및 활용 실태)

  • Yoon, Hye-Gyoung;Jo, Kwanghee;Jho, Hunkoog
    • Journal of The Korean Association For Science Education
    • /
    • v.37 no.2
    • /
    • pp.253-262
    • /
    • 2017
  • This study aims at investigating the perceptions of science teachers about the role of visual representations in the teaching of electromagnetism, and finding out how science teachers use visual representations in their teaching of electromagnetism and the difficulties they experience in dealing with those representations. A total of 121 science teachers responded to the online survey. The results showed that most of the teachers agreed to the significance of using visual representations in the classroom but regarded their role as means of simply delivering science knowledge rather than constructing or generating knowledge. For the three visual representations widely used in teaching of electromagnetism in secondary schools (electrostatic induction on electroscope, magnetic field around current carrying wire, structure and principle of electric motor), the teachers preferred teacher-centered use of visual representations rather than student-centered and teacher's construction of representations were the most frequent among four types of use; interpretation, construction, application, and evaluation. The difficulties of teaching with these three visual representations were categorized into several factors; teachers, students, the characteristics of the representations, and lack of resources and classroom environment. Teachers' limited perceptions about the role of visual representations were associated with the ways of using visual representations in their teaching. Implications for the effective use of visual representations for science learning and teaching were discussed.

Composition Changes in Cement Matrix of RC Column Exposed to Fire (화재에 노출된 RC기둥 시멘트 매트릭스의 구성성분 변화)

  • Kim, Jung-Joong;Youm, Kwang-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.369-375
    • /
    • 2014
  • This study examined the changes of microstructural compositions in cement matrix according to the depth from the surface of a reinforced concrete (RC) column exposed to fire. The RC column was exposed to a standard fire for 180 minutes. After the fire test, core samples passing through the column section were obtained. Using the core samples, the remaining fractions of calcium-silicate-hydrates (C-S-H) and calcium hydroxide in cement matrix at the surface, the depth of 40 mm and 80 mm and the center (175 mm) were examined using thermal gravimetric analysis (TGA) and X-ray diffraction analysis (XRDA). Using nuclear magnetic resonance (NMR) technique, the silicate polymerization of C-S-H in cement matrix was also evaluated. The experimental results indicated that the amount of C-S-H loss at the center of column experiencing the transferred fire temperature of $236^{\circ}C$ has been underestimated as the TGA results showed the highest C-S-H contents are located at the depth of 80 mm, where the transferred fire temperature is $419^{\circ}C$. Moreover, the destruction of silicate connections at the center was observed as similar as that at the depth of 40 mm, where the transferred fire temperature was $618^{\circ}C$. This might be attributed to the temperature changes during cooling time after the fire test was neglected. Due to the relatively low thermal conductivity of concrete, the high temperature, which can affect the change of microstructure in cements, will hold longer at the center of the column than other depth.

A Study on the Mobile Communication System for the Ultra High Speed Communication Network (초고속 정보통신망을 위한 이동수신 시스템에 관한 연구)

  • Kim, Kab-Ki;Moon, Myung-Ho;Shin, Dong-Hun;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.2 no.1 s.2
    • /
    • pp.1-14
    • /
    • 1998
  • In this paper, Antenna, LNA, Mixer, VCO, and Modulation/Demodulation in Baseband processor which are the RF main components in Wireless LAN system for ultra high-speed communications network are studied. Antenna bandwidth and selective fading due to multipath can be major obstacles in high speed digital communications. To solve this problem, wide band MSA which has loop-structure magnetic antenna characteristics is designed. Distributed mixer using dual-gate GaAs MESFET can achieve over 10dB LO/RF isolation without hybrid, and minimize circuit size. As linear mixing signal is produced, distortions can be decreased at baseband signals. Conversion gain is achieved by mixing and amplification simultaneously. Mixer is designed to have wide band characteristics using distributed amplifier. In VCO design, Oscillator design method by large signal analysis is used to produce stable signal. Modulation/Demodulation system in baseband processor, DS/SS technique which is robust against noise and interference is used to eliminate the effect of multipath propagation. DQPSK modulation technique with M-sequences for wideband PN spreading signals is adopted because of BER characteristic and high speed digital signal transmission.

  • PDF

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS

  • Trippe, Sascha;Kim, Jae-Young;Lee, Bangwon;Choi, Changsu;Oh, Junghwan;Lee, Taeseok;Yoon, Sung-Chul;Im, Myungshin;Park, Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.235-253
    • /
    • 2014
  • Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

Complex Formation of Transition and Post-Transition Metal Ions with 1,15-Diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacyclooctadecane (전이 및 중금속이온과 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxa-cyclooctadecane과의 착물형성)

  • Kim, Si-Joong;Lee, Myung-Jae;Koo, Chang-Hyung;Woo, Kyoun-Ja
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.645-652
    • /
    • 1991
  • The stability constants$(K_f)$ of the complexes of some transition and post-transition metal ions (Co(Ⅱ), Ni(Ⅱ), Cu(Ⅱ), Zn(Ⅱ), Cd(Ⅱ), Pb(Ⅱ), Hg(Ⅱ)) with $N_2O_3$-donor macrocyclic ligand, 1,15-diaza-3,4 : 12,13-dibenzo-5,8,11-trioxacyclooctadecane ($NtnOdienH_4$), have been determined by potentiometry in aqueous solution at $25^{\circ}C$. Log $K_f$ values of the complexes were : Co(Ⅱ): 3.83, Ni(Ⅱ) : 4.56, Cu(Ⅱ) : 7.74, Zn(Ⅱ) : 4.98, Cd(Ⅱ) : 3.91, Pb(Ⅱ) : 6.65, and Hg(Ⅱ) : 14.87. The order of stabilities of transition metal complexes was the same as the natural order of stability proposed by Williams-Irving. In post-transition metal complexes, the order of stabilities was Cd(Ⅱ) < Pb(Ⅱ) < Hg(Ⅱ), and the covalent character in metal ion-donor atoms bonds appeared a dominant factor in the stability. In methanol solution, each metal ion forms 1 : 1 complex, while Ni(Ⅱ) ion forms both 1 : 1 and 1 : 2 complexes. It was confirmed by $^1H-$ and $^{13}C-$NMR spectral study that the nitrogen atoms in the ligand were major contributors for the complexation of post-transition metal ions with the ligand. It was shown, by elementry analysis, electrical conductivity and magnetic susceptibility measurements, and spectral analysis, that solid Cu(Ⅱ)-and Zn(Ⅱ)-complexes have a distorted octahedral and a tetrahedral structure, respectively.

  • PDF

Study of Nonstoichiometric Composition and Physical Properties of $Sr_{1+x}Ho_{1-x}FeO_{4-y}$ System ($Sr_{1+x}Ho_{1-x}FeO_{4-y}$계의 비화학량론적 조성과 그 물성에 관한 연구)

  • Kwang Sun Ryu;Kwang Hyun Ryu;Kwon Sun Roh;Chul Hyun Yo
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.11
    • /
    • pp.923-928
    • /
    • 1993
  • The series of solid solutions in the $Sr_{1+x}Ho_{1-x}FeO_{4-y}$ (x = 0.00, 0.25, 0.50, 0.75 and 1.00) systems with $K_2NiF_4$ type structure have been prepared at 1550$^{\circ}$C under an atmospheric air pressure. The X-ray powder diffraction spectra of these samples assign that the crystallographic phases are tetragonal system over the whole x range. The lattice volume was increased with increasing the substitution amount of the $Sr^{2+}$ ion. The mole ratio of the $Fe^{4+}$ ion to total iron ions or ${\tau}$ value has been determined by Mohr salt titration of the sample and then the y value was calculated from x and ${\tau}$ values. The ${\tau}$ and y values have been increased with x values. The nonstoichiometric chemical formula are formulated from the general formula of $Sr_{1+x}Ho_{1-x}Fe^3_{1-}\;^+_{\tau}Fe_{\tau}^{4+}O_{4-y}$ replaced by x,${\tau}$ and y values. Mossbauer spectra show the mixed valence state and coordination state of $Fe^{3+}\;and\;Fe^{4+}$ ions. It is found out that the magnetic property of the samples is paramagnetic at room temperature. Electrical conductivity varied within the semiconductivity range of 1.0 to 1 ${\times}\;10^{-9}{\Omega}^{-1}cm^{-1}$. Activation energy of the electrical conductivity was decreased with the $\tau$ value. The conduction mechanism should be explained by the hopping model of the conduction electrons between the valence states of $Fe^{3+}\;and\;Fe^{4+}$ ions.

  • PDF

Magnetic Anisotropy Behavior in Antiparallely Coupled NiFe/Ru/NiFe Films (반자성으로 커플링된 NiFe/Ru/NiFe 박막에서의 자기이방성의 변화)

  • Song, Oh-Sung;Jung, Young-Soon;Lee, Ki-Yung
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.3
    • /
    • pp.97-102
    • /
    • 2003
  • Synthetic ferrimagnetic layer (SyFL) with structure NiFe/Ru/NiFe which can be applied high density TMR device in free layer were prepared by an inductively coupled plasma (ICP) helicon-sputter. We proposed a model of predicting coercivity (H$\_$c/), spin-flopping field (H$\_$sf/), and saturation field (H$\_$s/) as a function of Ru thicknesses, from the equilibrium state of energies of Zeeman, exchange, and uniaxial anisotropy. We fabricated the samples of Ta(50 ${\AA}$)/NiFe(50${\AA}$)nu(4∼20${\AA}$)NiFe(30 ${\AA}$)/Ta(50${\AA}$), and measured the M-H loops with a superconduction quantum interference device (SQUID) applying the external field up to ${\pm}$ 15 kOe. The result was well agreed with the proposed model, and reveal K$\_$u = 1000 erg/㎤, J$\_$ex/ =0.7 erg/$\textrm{cm}^2$. We report that H$\_$c/ below 10 Oe is available, and R$\_$u/ thickness range should be in 4-10 ${\AA}$ for MRAM application. Our result implies that permalloy layers may lead to considerable magnetostriction effect in SyFL and intermixing in NiFe/Ru interfaces.

Characterization of Physical Properties for Mineral Exploration of High-grade Limestone in Pungchon Formation (풍촌층 고품위 석회석 광상 탐사를 위한 암석 물성 특성)

  • Shin, Seung Wook;Park, Samgyu;Cho, Seoung-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.137-145
    • /
    • 2017
  • High-grade limestone applied to various chemical industries is abundant within upper Pungchon formation in Taebaeksan basin, South Korea. Geophysical exploration is one of the most efficient methods to investigate subsurface geological structure in an extensive area. Since the geophysical exploration for the high-grade limestone has rarely been conducted in Korea, its appropriate strategy has not been set up yet. In this study, we focused on to suggest the reasonable strategy and accumulate geophysical databases which are essential for interpreting geophysical images by characterizing laboratory physical properties of in-situ rocks. Hence, rocks were obtained from drilled cores consisting of lower Hwajeol formation, Pungchon formation, and dykes in Jeongseon area, Gangwon province. Geophysical laboratory experiments and petrography of the rocks were conducted. Since susceptibility values of the rocks in Pungchon Formation were obviously lower than those of upper Hwajeol and dykes, it is considered that the lithological boundaries could be distinguished by magnetic survey. In addition, electrical properties of the rocks in middle Pungchon formation were relatively different compared with those of upper/lower Pungchon formations. Thus, induced polarization is shown to be able to detect the high-grade limestone in upper Pungchon formation.