Browse > Article
http://dx.doi.org/10.5303/JKAS.2014.47.6.235

OPTICAL MULTI-CHANNEL INTENSITY INTERFEROMETRY - OR: HOW TO RESOLVE O-STARS IN THE MAGELLANIC CLOUDS  

Trippe, Sascha (Department of Physics and Astronomy, Seoul National University)
Kim, Jae-Young (Department of Physics and Astronomy, Seoul National University)
Lee, Bangwon (Department of Physics and Astronomy, Seoul National University)
Choi, Changsu (Department of Physics and Astronomy, Seoul National University)
Oh, Junghwan (Department of Physics and Astronomy, Seoul National University)
Lee, Taeseok (Department of Physics and Astronomy, Seoul National University)
Yoon, Sung-Chul (Department of Physics and Astronomy, Seoul National University)
Im, Myungshin (Department of Physics and Astronomy, Seoul National University)
Park, Yong-Sun (Department of Physics and Astronomy, Seoul National University)
Publication Information
Journal of The Korean Astronomical Society / v.47, no.6, 2014 , pp. 235-253 More about this Journal
Abstract
Intensity interferometry, based on the Hanbury Brown-Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25 000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as $m_R{\approx}14$, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass-radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric Baade-Wesselink method; (vii) the physics of gas accretion onto supermassive black holes, via resolved observations of the central engines of luminous active galactic nuclei; and (viii) calibration of amplitude interferometers by providing a sample of calibrator stars.
Keywords
Instrumentation: interferometers; Techniques: interferometric;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Bachor, H.-A., & Ralph, T. C. 2004, A Guide to Experiments in Quantum Optics (Weinheim: Wiley-VCH)
2 Zhao, M., et al. 2008, First Resolved Images of the Eclipsing and Interacting Binary ${\beta}$ Lyrae, ApJ, 684, L95   DOI
3 Zhao, M., et al. 2009, Imaging and Modeling Rapidly Rotating Stars: ${\alpha}$ Cephei and ${\alpha}$ Ophiuchi, ApJ, 701, 209   DOI
4 Spruit, H. C. 2002, Dynamo Action by Differential Rotation in a Stably Stratified Stellar Interior, A&A, 381, 923   DOI   ScienceOn
5 Stephan, M. 1874, Sur l'extreme petitesse du diametre apparent des etoiles fixes, Compt. Rend., 78, 1008
6 Segransan, D. 2007, Observability and UV Coverage, New Astron. Rev., 51, 597   DOI   ScienceOn
7 Solomos, N. 2008, New Observing Modes of a Future HTNBased Distributed Detection Network for High Time Resolution and Quantum Optical Astrophysics Experiments, AN, 329, 252
8 Strassmeier, K. G. 2009, Starspots, A&AR, 17, 251   DOI
9 Thompson, A. R., Moran, J. M., & Swenson G. W. 2004, Interferometry and Synthesis in Radio Astronomy, 2nd edn. (Weinheim: Wiley-VCH)
10 Twiss, R. Q., & Little, A. G. 1959, The Detection of Time-Correlated Photons by a Coincidence Counter, Austr. J. Phys., 12, 77   DOI
11 van Belle, G. T., & van Belle, G. 2005, Establishing Visible Interferometer System Responses: Resolved and Unresolved Calibrators, PASP, 117, 1263   DOI
12 Whitney, A. R., et al. 2013, Demonstration of a 16 Gbps $Station^{-1}$ Broadband-RF VLBI System, PASP, 125, 196   DOI
13 Wilson, T. L., Rohlfs, K., & Huttemeister, S. 2010, Tools of Radio Astronomy, 5th edn. (Berlin: Springer)
14 Podsiadlowski, P., Joss, P. C., & Hsu, J. J. L. 1992, Presupernova Evolution in Massive Interacting Binaries, ApJ, 391, 246   DOI
15 Yoon, S.-C., Woosley, S. E., & Langer, N. 2010, Type Ib/c Supernovae in Binary Systems. I. Evolution and Properties of the Progenitor Stars, ApJ, 725, 940   DOI
16 Ofir, A., & Ribak, E. N. 2006, Offline, Multidetector Intensity Interferometers - II. Implications and Applications, MNRAS, 368, 1652   DOI   ScienceOn
17 Park, J.-H., & Trippe, S. 2012, Multiple Emission States in Active Galactic Nuclei, JKAS, 45, 147   과학기술학회마을   DOI   ScienceOn
18 Park, J.-H., & Trippe, S. 2014, Radio Variability and Random Walk Noise Properties of Four Blazars, ApJ, 785, 76   DOI
19 Patat, F. 2004, Night Sky Brightness during Sunspot Maximum at Paranal, The Messenger (ESO), 115, 18
20 Raban, D., et al. 2009, Resolving the Obscuring Torus in NGC 1068 with the Power of Infrared Interferometry: Revealing the Inner Funnel of Dust, MNRAS, 394, 1325   DOI   ScienceOn
21 Renker, D. 2007, New Trends on Photodetectors, Nucl. Instr. Meth. A, 571, 1   DOI   ScienceOn
22 Richichi, A., Percheron, I., & Khristoforova, M. 2005, CHARM2: An Updated Catalog of High Angular Resolution Measurements, A&A, 431, 773   DOI
23 Rou, J., et al. 2013, Monte Carlo Simulation of Stellar Intensity Interferometry, MNRAS, 430, 3187   DOI
24 Sato, T., et al. 1978, Imaging System Using an Intensity Triple Correlator, Appl. Opt., 17, 2047   DOI
25 Lim, B., et al. 2009, CCD Photometry of Standard Stars at Maidanak Astronomical Observatory in Uzbekistan: Transformations and Comparisons, JKAS, 42, 161
26 Schramm, K.-J., et al. 1993, Recent Activity in the Optical and Radio Lightcurves of the Blazar 3C 345: Indications for a 'Lighthouse Effect' Due to Jet Rotation, A&A, 278, 391
27 Schuster, K.-F., et al. 2008, The Northern Extended Millimeter Array, IRAM Design Study [www.iram.fr/GENERAL/NOEMA-Phase-A.pdf]
28 Lorenz, E. 2004, Status of the 17-m MAGIC Telescope, New Astron. Rev., 48, 339   DOI   ScienceOn
29 Loudon, R. 2000, The Quantum Theory of Light, 3rd edn. (Oxford: Oxford Univ. Press)
30 Mandel, L., & Wolf, E. 1995, Optical Coherence and Quantum Optics (Cambridge: Cambridge Univ. Press)
31 McAlister, H. A. 1985, High Angular Resolution Measurements of Stellar Properties, ARA&A, 23, 59   DOI   ScienceOn
32 McKinney, J. C., Tchekhovskoy, A., & Blandford, R. D. 2013, Alignment of Magnetized Accretion Disks and Relativistic Jets with Spinning Black Holes, Science, 339, 49   DOI   ScienceOn
33 Michelson, A. A. 1891, Measurement of Jupiter's Satellites by Interference, PASP, 3, 274   DOI
34 Michelson, A. A., & Pease, F. G. 1921, Measurement of the Diameter of ${\alpha}$ Orionis with the Interferometer, ApJ, 53, 249   DOI
35 Monnier, J. D., et al. 2007, Imaging the Surface of Altair, Science, 317, 342   DOI   ScienceOn
36 Narayan, R., & Quataert, E. 2005, Black Hole Accretion, Science, 307, 77   DOI   ScienceOn
37 Jennison, R. C. 1958, A Phase Sensitive Interferometer Technique for the Measurement of the Fourier Transforms of Spatial Brightness Distributions of Small Angular Extent, MNRAS, 118, 276   DOI
38 Nunez, P. D., et al. 2012, High Angular Resolution Imaging with Stellar Intensity Interferometry Using Air Cherenkov Telescope Arrays, MNRAS, 419, 172   DOI   ScienceOn
39 Nunez, P. D., et al. 2012, Imaging Submilliarcsecond Stellar Features with Intensity Interferometry Using Air Cherenkov Telescope Arrays, MNRAS, 424, 1006   DOI   ScienceOn
40 Ofir, A., & Ribak, E. N. 2006, Offline, Multidetector Intensity Interferometers - I. Theory, MNRAS, 368, 1646   DOI   ScienceOn
41 Kim, J.-Y., & Trippe, S. 2013, How To Monitor AGN Intra-Day Variability at 230 GHz, JKAS, 46, 65   과학기술학회마을
42 Kim, K.-T., et al. 2011, 100-GHz Band Test Observations of the KVN 21-m Radio Telescopes, JKAS, 44, 81   과학기술학회마을   DOI   ScienceOn
43 Kippenhahn, R., & Thomas, H.-C. 1978, Accretion Belts on White Dwarfs, A&A, 63, 265
44 Kitchin, C. R. 2009, Astrophysical Techniques, 5th edn. (Boca Raton: CRC Press)
45 Labeyrie, A., Lipson, S. G., & Nisenson, P. 2006, An Introduction to Optical Stellar Interferometry (Cambridge: Cambridge Univ. Press)
46 Lacki, B. C. 2011, Cherenkov Telescopes as Optical Telescopes for Bright Sources: Today's Specialized 30-m Telescopes?, MNRAS, 416, 3075   DOI   ScienceOn
47 Lee, S.-S., et al. 2014, Early Science with the Korean VLBI Network: Evaluation of System Performance, AJ, 147, 77   DOI   ScienceOn
48 LeBohec, S., et al. 2010, Stellar Intensity Interferometry: Experimental Steps toward Long-Baseline Observations, Proc. SPIE, 7734, 77341D
49 Larsen, S. S., Clausen, J. V., & Storm, J. 2000, Reddenings and Metallicities in the LMC and SMC from Stromgren CCD Photometry, A&A, 364, 455
50 LeBohec, S., & Holder, J. 2006, Optical Intensity Interferometry with Atmospheric Cherenkov Telescope Arrays, ApJ, 649, 399   DOI
51 Lim, J., et al. 2013, Focal Reducer for CQUEAN (Camera for QUasars in EArly uNiverse), JKAS, 46, 161   과학기술학회마을   DOI   ScienceOn
52 Hanbury Brown, R., & Twiss, R. Q. 1958, Interferometry of the Intensity Fluctuations in Light. IV. A Test of an Intensity Interferometer on Sirius A, Proc. R. Soc. A, 248, 222   DOI
53 Hanbury Brown, R., et al. 1964, A Preliminary Measurement of the Angular Diameter of ${\alpha}$ Lyrae, Nature, 201, 1111   DOI
54 Hanbury Brown, R., Davis, J., & Allen, L. R. 1967, The Stellar Interferometer at Narrabri Observatory. I. A Description of the Instrument and the Observational Procedure, MNRAS, 137, 375   DOI
55 Hanbury Brown, R., et al. 1967, The Stellar Interferometer at Narrabri Observatory. II. The Angular Diameters of 15 Stars, MNRAS, 137, 393   DOI
56 Hanbury Brown, R. 1968, Stellar Interferometer at Narrabri Observatory, Nature, 218, 637   DOI
57 Hanbury Brown, R., Davis, J., & Allen, L. R. 1974, The Angular Diameters of 32 Stars, MNRAS, 167, 121   DOI
58 Hanbury Brown, R. 1974, The Intensity Interferometer: Its Application to Astronomy (London: Taylor & Francis)
59 Heger, A., Woosley, S. E., & Spruit, H. C. 2005, Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields, ApJ, 626, 350   DOI   ScienceOn
60 Haubois, X., et al. 2009, Imaging the Spotty Surface of Betelgeuse in the H Band, A&A, 508, 923   DOI   ScienceOn
61 Hewitt, A., & Burbidge, G. 1993, A Revised and Updated Catalog of Quasi-Stellar Objects, ApJSS, 87, 451   DOI
62 Holberg, J. B., et al. 1998, Sirius B: A New, More Accurate View, ApJ, 497, 935   DOI
63 Holmes, R. B., & Belen'kii, M. S. 2004, Investigation of the Cauchy-Riemann Equations for One-Dimensional Image Recovery in Intensity Interferometry, J. Opt. Soc. Am. A, 21, 697
64 Honma, M., et al. 2012, Fundamental Parameters of the Milky Way Based on VLBI Astrometry, PASJ, 64, 136   DOI
65 Foellmi, C. 2009, Intensity Interferometry and the Second-Order Correlation Function $g^{(2)}$ in Astrophysics, A&A, 507, 1719   DOI
66 Fowles, G. R. 1975, Introduction to Modern Optics, 2nd edn. (New York: Dover Publ.)
67 Gamo, H. 1963, Triple Correlator of Photoelectric Fluctuations as a Spectroscopic Tool, J. Appl. Phys., 34, 875   DOI
68 Gamo, H. 1966, Stellar Intensity Interferometer. I. Signalto-Noise Ratio for High-Intensity Radiation, J. Opt. Soc. Am., 56, 441   DOI
69 Glindemann, A. 2011, Principles of Stellar Interferometry (Berlin: Springer)
70 Goodman, J. W. 1985, Statistical Optics (New York: J. Wiley & Sons)
71 Hanbury Brown, R., & Twiss, R. Q. 1954, A New Type of Interferometer for Use in Radio Astronomy, Phil. Mag., 45, 663   DOI
72 Hale, D. D. S., et al. 2000, The Berkeley Infrared Spatial Interferometer: A Heterodyne Stellar Interferometer for the Mid-Infrared, ApJ, 537, 998   DOI
73 Hanbury Brown, R., & Twiss, R. Q. 1957, Interferometry of the Intensity Fluctuations in Light. II. An Experimental Test of the Theory for Partially Coherent Light, Proc. R. Soc. A, 243, 291
74 Hanbury Brown, R., Jennison, R. C., & Das Gupta, M. K. 1952, Apparent Angular Sizes of Discrete Radio Sources, Nature, 170, 1061   DOI
75 Hanbury Brown, R., & Twiss, R. Q. 1957, Interferometry of the Intensity Fluctuations in light. I. Basic Theory: the Correlation between Photons in Coherent Beams of Radiation, Proc. R. Soc. A, 242, 300   DOI
76 Hanbury Brown, R., & Twiss, R. Q. 1958, Interferometry of the Intensity Fluctuations in Light. III. Applications to Astronomy, Proc. R. Soc. A, 248, 199   DOI
77 Cantiello, M., et al. 2009, Sub-Surface Convection Zones in Hot Massive Stars and Their Observable Consequences, A&A, 499, 279   DOI   ScienceOn
78 Cantiello, M., & Braithwaite, J. 2011, Magnetic Spots on Hot Massive Stars, A&A, 534, A140   DOI
79 Davies, J. M., & Cotton, E. S. 1957, Design of the Quartermaster Solar Furnace, Solar Energy, 1, 16   DOI
80 de Grijs, R. 2011, An Introduction to Distance Measurement in Astronomy (Chichester: Wiley & Sons)
81 Dravins, D., et al. 2012, Stellar Intensity Interferometry: Prospects for Sub-Milliarcsecond Optical Imaging, New Astron. Rev., 56, 143   DOI   ScienceOn
82 Deupree, R. G., et al. 2012, Matching the Spectral Energy Distribution and p-Mode Oscillation Frequencies of the Rapidly Rotating Delta Scuti Star ${\alpha}$ Ophiuchi with a Two-Dimensional Rotating Stellar Model, ApJ, 753, 20   DOI
83 Dravins, D. 2010, Towards a Square-Kilometer Optical Telescope: the Potential of Intensity Interferometry, Rev. Mex. AA, 38, 17
84 Dravins, D., et al. 2010, Stellar Intensity Interferometry: Astrophysical Targets for Sub-Milliarcsecond Imaging, Proc. SPIE, 7734, 77340A
85 Dravins, D., et al. 2013, Optical Intensity Interferometry with the Cherenkov Telescope Array, Astropart. Phys., 43, 331   DOI   ScienceOn
86 Drilling, J. S., & Landolt, A. U. 2000, Normal Stars, in: Cox, A. N. (ed.), Allen's Astrophysical Quantities, 4th edn. (New York: Springer), 381
87 Eggenberger, P., Maeder, A., & Meynet, G. 2005, Stellar Evolution with Rotation and Magnetic Fields. IV. The Solar Rotation Profile, A&A, 440, L9   DOI   ScienceOn
88 Fizeau, H. 1868, Prix Bordin: rapport sur le concours de l'annee 1867, Compt. Rend., 66, 932
89 Barbieri, C., et al. 2009, New Astrophysical Opportunities Exploiting Spatio-Temporal Optical Correlations, Astro 2010 Decadal Survey, Science White Papers, no. 61
90 Baron, F., et al. 2012, Imaging the Algol Triple System in H Band with the CHARA Interferometer, ApJ, 752, 20   DOI
91 Beckmann, V., & Shrader, C. 2012, Active Galactic Nuclei (Weinheim: Wiley-VCH)
92 Baron, F., et al. 2014, CHARA/MIRC Observations of Two M Supergiants in Perseus OB1: Temperature, Bayesian Modeling, and Compressed Sensing Imaging, ApJ, 785, 46   DOI
93 Biland, A., et al. 2014, Calibration and Performance of the Photon Sensor Response of FACT - the First G-APD Cherenkov Telescope, arXiv:1403.5747
94 Barstow, M. A., et al. 2005, Hubble Space Telescope Spectroscopy of the Balmer Lines in Sirius B, MNRAS, 362, 1134   DOI   ScienceOn
95 Bessell, M. S. 1979, UBVRI Photometry II: The Cousins VRI System, Its Temperature and Absolute Flux Calibration, and Relevance for Two-Dimensional Photometry, PASP, 91, 589   DOI
96 Boissier, J., et al. 2009, Present and Future Science with the IRAM Plateau de Bure Interferometer, Earth Moon Planet, 105, 89   DOI
97 Born, M., & Wolf, E. 1999, Principles of Optics, 7th edn. (Cambridge: Cambridge Univ. Press)
98 Boyajian, T. S., et al. 2012, Stellar Diameters and Temperatures. I. Main-Sequence A, F, and G Stars, ApJ, 746, 101
99 Boyajian, T. S., et al. 2012, Stellar Diameters and Temperatures. II. Main-Sequence K- and M-stars, ApJ, 757, 112   DOI
100 Boyajian, T. S., et al. 2013, Stellar Diameters and Temperatures. III. Main Sequence A, F, G, and K Stars: Additional High-Precision Measurements and Empirical Relations, ApJ, 771, 40   DOI
101 Klein, I., Guelman, M., & Lipson, S. G. 2007, Space-Based Intensity Interferometer, Appl. Opt., 46, 4237   DOI
102 Aharonian, F., et al. 2006, Observations of the Crab Nebula with HESS, A&A, 457, 899   DOI   ScienceOn
103 Anderhub, H., et al. 2011, A G-APD Based Camera for Imaging Atmospheric Cherenkov Telescopes, Nucl. Instr. Meth. A, 628, 107   DOI   ScienceOn
104 Anderhub, H., et al. 2013, Design and Operation of FACT- The First G-APD Cherenkov Telescope, J. Inst., 8, P06008