DOI QR코드

DOI QR Code

Secondary Science Teachers' Perception about and Actual Use of Visual Representations in the Teaching of Electromagnetism

중등 전자기 수업에서 사용하는 시각적 표상에 대한 교사 인식 및 활용 실태

  • Received : 2017.01.02
  • Accepted : 2017.02.13
  • Published : 2017.04.30

Abstract

This study aims at investigating the perceptions of science teachers about the role of visual representations in the teaching of electromagnetism, and finding out how science teachers use visual representations in their teaching of electromagnetism and the difficulties they experience in dealing with those representations. A total of 121 science teachers responded to the online survey. The results showed that most of the teachers agreed to the significance of using visual representations in the classroom but regarded their role as means of simply delivering science knowledge rather than constructing or generating knowledge. For the three visual representations widely used in teaching of electromagnetism in secondary schools (electrostatic induction on electroscope, magnetic field around current carrying wire, structure and principle of electric motor), the teachers preferred teacher-centered use of visual representations rather than student-centered and teacher's construction of representations were the most frequent among four types of use; interpretation, construction, application, and evaluation. The difficulties of teaching with these three visual representations were categorized into several factors; teachers, students, the characteristics of the representations, and lack of resources and classroom environment. Teachers' limited perceptions about the role of visual representations were associated with the ways of using visual representations in their teaching. Implications for the effective use of visual representations for science learning and teaching were discussed.

본 연구에서는 중등 전자기 수업에서 사용하는 시각적 표상의 역할에 대한 교사의 인식과 활용 실태를 조사하고 시각적 표상 활용과 관련해서 교사가 겪는 어려움을 파악하고자 하였다. 조사는 온라인 설문 방식으로 진행되었으며 과학교사 121명이 참여하였다. 연구 결과에 따르면, 교사들은 전자기 수업에서 시각적 표상 활용의 중요성에 대해 전반적으로 동의하였으나, 시각적 표상을 주로 과학 지식의 전달 도구로만 인식하는 경향이 있었다. 실제 수업에서 활용하는 방식은 주로 인터넷을 검색을 바탕으로 컴퓨터를 활용해 제시하는 방법을 가장 많이 사용하였다. 구체적으로 전자기 수업에서 널리 활용되는 세 가지 시각적 표상(검전기의 정전기 유도, 전류 주변의 자기장, 전동기의 구조와 원리)에 대해 활용 방식을 조사한 결과, 학생 중심 활용보다 교사 중심 활용이 두 배 가량 많았고, 시각적 표상의 '해석', '구성', '적용', '평가'와 관련해서는 '교사의 구성'이 가장 빈번한 것으로 나타났다. 이러한 교사 중심의 시각적 표상 활용 실태는 시각적 표상의 역할에 대한 교사의 제한적 인식과 밀접하게 연관되어 있는 것으로 보인다. 또한 주어진 세 가지 시각적 표상 활용과 관련된 교사의 어려움은 크게 '교사 자신', '학생', '표상 자체의 특성', '자료 부족이나 수업환경'에 기인한 것으로 범주화되었다. 시각적 표상의 연구와 개발에 있어서 이러한 요인들이 적극 고려되어야 하며 과학 수업에서 시각적 표상을 효과적으로 활용하기 위해서는 시각적 표상의 역할에 대한 교사의 인식이 확장되도록 하고, 교사의 표상 활용 능력을 증진시키는 것이 필요하다.

Keywords

References

  1. Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097. https://doi.org/10.1126/science.1204153
  2. Chang, H-Y. & Tzeng, S-F. (2015), Investigating high school students' visualization competence of matter. in the Proceedings of 2015 National Association Research in Science Teaching, edited by V. Akerson (Chicago, 2015), p.28.
  3. Coleman, J. M., McTigue, E. M., & Smolkin, L. B. (2011). Elementary teachers' use of graphical representations in science teaching. Journal of Science Teacher Education, 22(7), 613-643. https://doi.org/10.1007/s10972-010-9204-1
  4. Cook, M. (2011). Teachers' use of visual representations in the science classroom. Science Education International, 22(3), 175-184.
  5. Eilam, B., & Gilbert, J. K. (2014). The significance of visual representations in the teaching of science. In Science teachers' use of visual representations (pp. 3-28). Springer International Publishing.
  6. Healey, P. G. T. (2006). Drawing things together: Integrating modalities and co-ordinating understanding. In Sixth IEEE International Conference on Advanced Learning Technologies ICALT'06 (pp. 1200-1201). Kerkrade.
  7. Jo, K., Jho, H., & Yoon, H.-G.(2015) Analysis of visual representations related to electromagnetism in primary and secondary science textbooks. New Physics: Sae Mulli, 65(4), 343-357. https://doi.org/10.3938/NPSM.65.343
  8. Kozma, R., & Russell, J. (2005). Students becoming chemists: developing representational competence. In J. K. Gilbert (Ed.), Visualizations in science education (pp. 121-146). Dordrecht, The Netherlands: Springer.
  9. Latour, B. (1986). Visualization and cognition: Thinking with eyes and hands. Knowledge and Society, 6(1), 1-40.
  10. Latour, B. (1987). Science in Action. Milton Keynes. Bucks: Open University.
  11. Liu, Y., Won, M., & Treagust, D. F. (2014). Secondary biology teachers' use of different types of diagrams for different purposes. In Science teachers' use of visual representations (pp. 103-121). Springer International Publishing.
  12. Lynch, M., & Woolgar, S. (1990). Representation in scientific practice. Cambridge, MA: MIT Press.
  13. Nitz, S., Ainsworth, S. E., Nerdel, C., & Prechtl, H. (2014). Do student perceptions of teaching predict the development of representational competence and biological knowledge? Learning and Instruction 31, pp. 13-22. https://doi.org/10.1016/j.learninstruc.2013.12.003
  14. Ochs, E., Jacoby, S., & Gonzales, P. (1994). Interpretative journeys: How physicists talk and travel through graphic space. Configurations, 2(1), 151-172. https://doi.org/10.1353/con.1994.0003
  15. Ozcelik, A. T., & McDonald, S. P. (2013). Preservice science teachers' uses of inscriptions in science teaching. Journal of Science Teacher Education, 24(7), 1103-1132. https://doi.org/10.1007/s10972-013-9352-1
  16. Parnafes, O., & Trachtenberg-Maslaton, R. (2014). Transformed instruction: Teaching in a student-generated representations learning environment. In Science teachers' use of visual representations (pp. 271-290). Springer International Publishing.
  17. Scheid, T., Mueller, A., Hettmannsperger, R., & Schnotz, W. (2013) Fostering the understanding of scientific experiments and phenomena through representational analysis tasks. The Proceedings of 2013 European Science Education Research Association, edited by C. P. Constantinou, N. Papadouris and A. Hadjigeorgiou (Nicosia, 2013). pp. 102-108.
  18. Thomas, M. O., Wilson, A. J., Corballis, M. C., Lim, V. K., & Yoon, C. (2010). Evidence from cognitive neuroscience for the role of graphical and algebraic representations in understanding function. ZDM, 42(6), 607-619. https://doi.org/10.1007/s11858-010-0272-7
  19. Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (2013). Constructing representations to learn in science. Sense publisher: Rotterdam.
  20. Yoon, H.-G. Jo, K., & Jho, H. (2016). Middle school students' interpretation, construction, and application of visual representations for electrostatic induction. New Physics: Sae Mulli, 66(5), 580-589. https://doi.org/10.3938/NPSM.66.580