• Title/Summary/Keyword: magnetic impact

Search Result 222, Processing Time 0.037 seconds

Effect of change intensity fields of magnetized water on fresh and hardened characteristics of concrete

  • Ali S. Ahmed;Mohamed M.Y. Elshikh;Mosbeh R. Kaloop;Jong Wan Hu;Walid E. Elemam
    • Computers and Concrete
    • /
    • v.31 no.2
    • /
    • pp.97-110
    • /
    • 2023
  • This study investigates experimentally the impact of magnetized water (MW) on the fresh and hardened characteristics of concrete. Five types of MW are produced using magnetic fields of 1.4 and 1.6 Tesla for treating water with 100, 150, and 250 cycles. The concrete properties are assessed using the slump test, compressive strength test, scanning electron microscopy (SEM) analysis, energy dispersive X-ray analysis (EDX), and Fourier transform infrared spectrophotometry (FTIR). Furthermore, the chemical-physical characteristics of tap water (TW) and MW are evaluated. The results showed the magnetic field intensity has a significant impact on the magnetization effect; the best magnetizing conditions were found when TW was exposed successively to magnetic fields of 1.6 T and 1.4 T for 150 cycles. In addition, 150 MW cycles can be used to improve the compressive strength and workability of concrete by 40% and 17%, respectively. pH, total dissolved solids, and electrical conductivity improved by 15%, 17%, and 7%, respectively, when using MW. Additionally, MW can be used to enhance cement hydration chemical processes and made concrete's structure denser.

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Magnetic field imperfections of in-vacuum undulator on PLS-II beam dynamics

  • Chunjarean, Somjai;Hwan, Shin-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.359-359
    • /
    • 2011
  • Many research applications in basic sciences and biology such as protein crystallography require hard x-rays in the range of 3-20 keV with high brightness. A medium energy storage ring as PLS-II with a beam energy of 3 GeV can meet such high photon energies. In-vacuum undulators (IVU) with a period length of 20 mm and a peak field of 0.97 T are used in the PLS-II ring to produce such X-rays in the fundamental or higher harmonics. Due to the many poles and high fields, insertion devices like wigglers and undulators have a significant impact on the stability of the electron beam with potential degradation of beam quality and life time. Therefore, nonlinear fields must be determined by measurement and evaluated as to their impact on beam stability. Specifically, transverse field roll-off can be a serious detriment to injection in top-up mode and must be corrected. We use magnetic field measurement data to evaluated beam stability by tracking particles using an explicit symplectic integrator in both, transverse and longitudinal planes.

  • PDF

Separation Between Soil Particles and Magnetic Beads by Magnetic Force (자력을 이용한 토양입자와 마이크로자성체의 분리 연구)

  • So, Hyung-Suk;Shin, Hyun-Chul;Yoo, Yeong-Seok
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.76-80
    • /
    • 2005
  • It was evaluated whether magnetic beads able to add the functionality of environment purification can be employed in processing soil pollutants. In this study, the micro scale magnetic beads containing carboxyl groups were mixed with water and the soil $(<0.025{\cal}mm) filtered through a sieve, and then it was agitated before isolating the magnetic substances by the use of outer magnetic force. The factors considered at this step were the ratio of soil to magnetic beads, ratio of soil to water, size of the tube where the reaction occur, and intensity of the magnetic force. From the separation experiment between soil and magnetic beads, it was concluded that the magnetic beads and water quantity have an impact on the degree of separation, yet the size of the tube and magnetic force does not have a considerable effect upon that in this small-scaled experiment. Through this experiment, the reaction conditions were optimized to achieve $90\~100\%$ of separation. Therefore, it was concluded that when the functionalized magnetic beads is introduced to environmental processing, it is able to be adopted to the soil processing as well as the water processing.

Design of a Reflector for Infrared Camera (열화상 카메라용 반사경 설계)

  • Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.1
    • /
    • pp.97-104
    • /
    • 2014
  • Recently infrared cameras have been widely used to diagnosis degradation status of the power substitution system. At the place of high magnetic field, however, electronic parts of infrared camera take a place problem that is not reasonable working due to high magnetic field. In this paper, technique of design for reflector is proposed to perform degradation diagnosis without damage of infrared camera in a power substation system including the rectifier that is able to impact to the infrared camera by high magnetic field.

FARADAY ROTATION OBSERVATIONS OF MAGNETIC FIELDS IN GALAXY CLUSTERS

  • CLARKE TRACY E.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.337-342
    • /
    • 2004
  • The presence of magnetic fields in the intracluster medium in clusters of galaxies has been revealed through several different observational techniques. These fields may be dynamically important in clusters as they will provide additional pressure support to the intracluster medium as well as inhibit transport mechanisms such as thermal conduction. Here, we review the current observational state of Faraday rotation measure studies of the cluster fields. The fields are generally found to be a few to 10 $\mu$G in non-cooling core clusters and ordered on scales of 10 - 20 kpc. Studies of sources at large impact parameters show that the magnetic fields extend from cluster cores to radii of at least 500 kpc. In central regions of cooling core systems the field strengths are often somewhat higher (10 - 40 $\mu$G) and appear to be ordered on smaller scales of a few to 10 kpc. We also review some of the recent work on interpreting Faraday rotation measure observations through theory and numerical simulations. These techniques allow us to build up a much more detailed view of the strength and topology of the fields.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.464-467
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and excitation tests were performed to investigate the dynamic properties of squeeze mode type MR mount. Responses of the mount were compared in proportion to the applied magnetic field strength. The experimental results show that the mount can effectively reduce vibration amplitude in a wide frequency range by changing the applied magnetic field strength.

  • PDF

Detent Force Analysis in Permanent Magnet Linear Synchronous Motor Considering Longitudinal End Effects

  • Li, Liyi;Ma, Mingna;Chan, C.C.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.9-15
    • /
    • 2013
  • This paper presents a uniform analytical model by energy method and Fourier series expansion to analyze detent force in uneven magnetic field for permanent magnet linear synchronous motor (PMLSM). The model reveals that detent force in long-primary type is mainly influenced by non-ideal distribution of permanent magnet magnetic motive force, while nounified air-gap permeance makes a great impact on detent force of short-primary type. Hence, magnetic field similarity of motor design techniques referring rotary counterpart are adopted. For long-primary type novel method of splitting edge magnets is proposed to reduce end effects force, and optimal widths of edge tooth in short-primary type also verify the effectiveness of magnetic field similarity. The experimental results validate finite element analysis results.

A Study on the Improvement of Attraction Force of Solenoid Operated Valves (솔레노이드 밸브의 흡인력 개선을 위한 연구)

  • Lim, Byung-Ju;Park, Chang-Dae;Lee, Tae-Gu;Yun, So-Nam;Chung, Kyung-Yul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.121-122
    • /
    • 2012
  • In this research, we studied on improvement of the attraction force of solenoid operated valve for normal operation in harsh environment like vessel. Attraction force of the solenoid valves is effected by the B-H characteristics of magnetic material and the size of coil. In order to specify impact of the affection, we performed the B-H characteristics test and attraction force. Test results show that magnetic flux densities of the materials are difference each other more than 2 times in same magnetic intensity, and attraction force of the solenoid valve is 1.7 times difference as changes of resistance and the number of coil winding of solenoid.

  • PDF

Review of magnetic pulse welding

  • Kang, Bong-Yong
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.7-13
    • /
    • 2015
  • Magnetic pulse welding(MPW) is a solid state welding process that is accomplished by a magnetic pulse causing a high-velocity impact on two materials, resulting in a true metallurgical bond. One of the great advantages of MPW is that it is suitable for joining dissimilar metals. No heat affected zones are created because of the negligible heating and the clean surfaces formation that is a consequence of the jet and the metal is not degraded. Also, compared to other general welding processes, this process leads to only a low formation of brittle intermetallic compounds However, although this process has many advantages its application to industrial fields has so far been very low. Therefore, in this study we are presenting the principles, apparatus and application of MPW for application the industrial fields.