DOI QR코드

DOI QR Code

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad (School of Materials Science and Engineering, Changwon National University) ;
  • Anwar, M.S. (School of Materials Science and Engineering, Changwon National University) ;
  • Kim, Eunji (School of Materials Science and Engineering, Changwon National University) ;
  • Koo, Bon Heun (School of Materials Science and Engineering, Changwon National University) ;
  • Lee, Chan Gyu (School of Materials Science and Engineering, Changwon National University)
  • Received : 2016.06.29
  • Accepted : 2016.10.10
  • Published : 2016.11.27

Abstract

$La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Keywords

References

  1. K. A. Gschneidner Jr, V. K. Pecharsky and A. O. Tsokol, Rep. Prog. Phys., 68, 1479 (2005). https://doi.org/10.1088/0034-4885/68/6/R04
  2. M. S. Anwar and B. H. Koo, Elecron. Mater. Lett., 11, 614 (2015). https://doi.org/10.1007/s13391-015-4461-y
  3. I. Hussain, M. S. Anwar, J. W. Kim, K. C. Chung and B. H. Koo, Ceram. Int., 42, 13098 (2016). https://doi.org/10.1016/j.ceramint.2016.05.094
  4. B. F. Yu, Q. Guo, B. Zhang, X. Z. Meng and Z. Chen, Int. J. Refrig., 26, 622 (2003). https://doi.org/10.1016/S0140-7007(03)00048-3
  5. M. H. Phan and S. C. Yu, J. Magn. Magn. Mater., 308, 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025
  6. R. Caballero-Flores, V. Franco, A. Conde, K. E. Knipling and M. A. Willard, Appl. Phys. Lett., 98, 102501 (2011). https://doi.org/10.1063/1.3561753
  7. K. A. Gschneidner Jr and V. K. Pecharsky, Annu. Rev. Mater. Sci., 30, 387 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387
  8. Y. Tokura, Rep. Prog. Phys., 69, 797 (2006). https://doi.org/10.1088/0034-4885/69/3/R06
  9. J. B. Goodenough, Rep. Prog. Phys., 67, 1915 (2004). https://doi.org/10.1088/0034-4885/67/11/R01
  10. J. Paul Attfield, Chem. Mater., 10, 3239 (1998). https://doi.org/10.1021/cm980221s
  11. A. J. Millis, Nature, 392, 147 (1998). https://doi.org/10.1038/32348
  12. V. K. Pecharsky and K. A. Gschneidner Jr, Phys. Rev. Lett., 78, 4494 (1997). https://doi.org/10.1103/PhysRevLett.78.4494
  13. H. Wada and Y. Tanabe, Appl. Phys. Lett., 79, 3302 (2001). https://doi.org/10.1063/1.1419048
  14. Q. Tegus, E. Bruck, K.H. Buschow and F. R. de Boer, Nature, 415, 150 (2002). https://doi.org/10.1038/415150a
  15. F. W. Wang, X. X. Zhang and F. X. Hu, Appl. Phys. Lett., 77, 1360 (2000). https://doi.org/10.1063/1.1290389
  16. M. H. Phan and S. C. Yu, J. Magn. Magn. Mater., 308, 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025
  17. B. K. Banerjee, Phys. Lett., 12, 16 (1964).
  18. I. Hussain, M. S. Anwar, S. R. Lee and B. H. Koo, J. Supercond. Nov. Magn., 28, 3323 (2015). https://doi.org/10.1007/s10948-015-3157-8
  19. Z. M. Wang, G. Ni, Q. Y. Xu, H. Sang and Y. M. Du, J. Appl. Phys., 90, 5689 (2001). https://doi.org/10.1063/1.1415055
  20. A. Rostamnejadi, M. Venkatesan, P. Kameli, H. Salamati and J. M. D. Coey, J. Magn. Magn. Mater., 323, 2214 (2011). https://doi.org/10.1016/j.jmmm.2011.03.036