DOI QR코드

DOI QR Code

FARADAY ROTATION OBSERVATIONS OF MAGNETIC FIELDS IN GALAXY CLUSTERS

  • CLARKE TRACY E. (Department of Astronomy, University of Virginia)
  • Published : 2004.12.01

Abstract

The presence of magnetic fields in the intracluster medium in clusters of galaxies has been revealed through several different observational techniques. These fields may be dynamically important in clusters as they will provide additional pressure support to the intracluster medium as well as inhibit transport mechanisms such as thermal conduction. Here, we review the current observational state of Faraday rotation measure studies of the cluster fields. The fields are generally found to be a few to 10 $\mu$G in non-cooling core clusters and ordered on scales of 10 - 20 kpc. Studies of sources at large impact parameters show that the magnetic fields extend from cluster cores to radii of at least 500 kpc. In central regions of cooling core systems the field strengths are often somewhat higher (10 - 40 $\mu$G) and appear to be ordered on smaller scales of a few to 10 kpc. We also review some of the recent work on interpreting Faraday rotation measure observations through theory and numerical simulations. These techniques allow us to build up a much more detailed view of the strength and topology of the fields.

Keywords

References

  1. Bicknell, G. V., Cameron, R. A., & Gingold. R. A. 1990, ApJ. 357. 373 https://doi.org/10.1086/168928
  2. Carilli, C. L., & Taylor, G. B. 2002, ARA&A, 40, 319 https://doi.org/10.1146/annurev.astro.40.060401.093852
  3. Clarke, T. E. 2003, in Matter and Energy in Clustersof Galaxies, ASP Conf. Proceedings, Vol. 301, Eds. S.Bowyer and C.Y. Hwang, p. 185
  4. Clarke, T. E., Kronberg, P. P., & B$\ddot{o}$hringer, H. 2001, ApJ,547.111 https://doi.org/10.1086/318896
  5. Dolag, K., Schindler, S., Govoni, F., & Feretti, L. 2001,A&A, 378, 777 https://doi.org/10.1051/0004-6361:20011219
  6. Dreher, J. W., Carilli, C. L., & Perley, R. A. 1987, ApJ,316, 611 https://doi.org/10.1086/165229
  7. Eilek, J. A. , & Owen, F. N. 2002, ApJ, 567, 202 https://doi.org/10.1086/338376
  8. En$\ss$lin, T. A. , & Vogt, C. 2003, A&A, 401, 835 https://doi.org/10.1051/0004-6361:20030172
  9. En$\ss$lin, T. A., Vogt, C., Clarke, T. E., & Taylor, G. B. 2003 ApJ, 597, 870 https://doi.org/10.1086/378631
  10. Feretti, L., Dallacasa, D., Govoni, F., Giovannini, G., Taylor, G. B., & Klein, U. 1999, A&A, 344, 472
  11. Frick, P., Stepanov, R., Shukurov, A., & Sokoloff, D. 2001, MNRAS, 325, 649 https://doi.org/10.1046/j.1365-8711.2001.04462.x
  12. Garrington, S. T., Conway, R. G., & Leahy, J. P. 1991 MNRAS, 250. 171 https://doi.org/10.1093/mnras/250.1.171
  13. Garrington, S. T., Leahy, J. P., Conway, R. G., & Laing, R. A. 1988, Nature, 331, 147 https://doi.org/10.1038/331147a0
  14. Ge, J. P., & Owen, F. N. 1993, AJ, 105, 778 https://doi.org/10.1086/116471
  15. Ge, J. P., & Owen, F. N. 1994, AJ, 108, 1523 https://doi.org/10.1086/117173
  16. Govoni. F. & Feretti, L. 2004, International Journal of Modern Physics D, in press, astro-ph/0410182
  17. Kim, K.-T., Tribble, P. C., & Kronberg, P. P. 1991, ApJ, 379, 80 https://doi.org/10.1086/170484
  18. Kronberg, P. P. 1994, Reports of Progress in Physics, 57, 325 https://doi.org/10.1088/0034-4885/57/4/001
  19. Laing, R. A. 1988, Nature, 331, 149 https://doi.org/10.1038/331149a0
  20. Lawler, J. M., & Dennison, B. 1982, ApJ, 252, 81 https://doi.org/10.1086/159536
  21. Murgia, M., Govoni, F., Feretti, L., Giovannini, G., Dal-lacasa, D., Fanti, R., Taylor, G. B., & Dolag, K. 2004, A&A, 424, 429 https://doi.org/10.1051/0004-6361:20040191
  22. Rudnick, L., & Blundell, K. M. 2003, ApJ, 588, 143 https://doi.org/10.1086/373891
  23. Ruzmaikin, A. A., & Sokoloff, D. D. 1979, A&A, 78. 1
  24. Taylor, G. B., Fabian, A. C., & Allen, S. W. 2002, MNRAS, 334, 769 https://doi.org/10.1046/j.1365-8711.2002.05555.x
  25. Taylor, G. B., & Perley, R. A. 1993, ApJ, 416, 554 https://doi.org/10.1086/173257
  26. Vogt, C., & En$\ss$lin, T. A. 2003, A&A, 412, 373 https://doi.org/10.1051/0004-6361:20031434
  27. Widrow, L. M. 2002, Reviews of Modern Physics, 74, 775 https://doi.org/10.1103/RevModPhys.74.775

Cited by

  1. Spectral and polarization study of the double relics in Abell 3376 using the Giant Metrewave Radio Telescope and the Very Large Array vol.426, pp.2, 2012, https://doi.org/10.1111/j.1365-2966.2012.21519.x
  2. Inverse-Compton emission from clusters of galaxies: Predictions for ASTRO-H vol.582, 2015, https://doi.org/10.1051/0004-6361/201525758
  3. IMPLICATIONS OFFERMIOBSERVATIONS FOR HADRONIC MODELS OF RADIO HALOS IN CLUSTERS OF GALAXIES vol.728, pp.1, 2011, https://doi.org/10.1088/0004-637X/728/1/53
  4. Using rotation measure grids to detect cosmological magnetic fields: A Bayesian approach vol.591, 2016, https://doi.org/10.1051/0004-6361/201527291
  5. Magnetic Fields in the Large-Scale Structure of the Universe vol.166, pp.1-4, 2012, https://doi.org/10.1007/s11214-011-9839-z
  6. NEW DETECTIONS OF RADIO MINIHALOS IN COOL CORES OF GALAXY CLUSTERS vol.781, pp.1, 2013, https://doi.org/10.1088/0004-637X/781/1/9
  7. The intracluster magnetic field power spectrum in Abell 2255 vol.460, pp.2, 2006, https://doi.org/10.1051/0004-6361:20065964
  8. High-energy gamma-ray and neutrino backgrounds from clusters of galaxies and radio constraints vol.578, 2015, https://doi.org/10.1051/0004-6361/201425249
  9. USING RADIO HALOS AND MINIHALOS TO MEASURE THE DISTRIBUTIONS OF MAGNETIC FIELDS AND COSMIC RAYS IN GALAXY CLUSTERS vol.722, pp.1, 2010, https://doi.org/10.1088/0004-637X/722/1/737
  10. FARADAY ROTATION MEASURE DUE TO THE INTERGALACTIC MAGNETIC FIELD. II. THE COSMOLOGICAL CONTRIBUTION vol.738, pp.2, 2011, https://doi.org/10.1088/0004-637X/738/2/134
  11. The Large Scale Structure: Polarization Aspects vol.32, pp.4, 2011, https://doi.org/10.1007/s12036-011-9118-0
  12. An improved map of the Galactic Faraday sky vol.542, 2012, https://doi.org/10.1051/0004-6361/201118526
  13. COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF GALAXY CLUSTER RADIO RELICS: INSIGHTS AND WARNINGS FOR OBSERVATIONS vol.765, pp.1, 2013, https://doi.org/10.1088/0004-637X/765/1/21
  14. Non-thermal emission in the core of Perseus: results from a long XMM-Newton observation vol.493, pp.1, 2009, https://doi.org/10.1051/0004-6361:200810138
  15. Deep multi-frequency rotation measure tomography of the galaxy cluster A2255 vol.525, 2011, https://doi.org/10.1051/0004-6361/201014158
  16. Saturation of Zeldovich stretch–twist–fold map dynamos vol.81, pp.05, 2015, https://doi.org/10.1017/S0022377815000628
  17. THE MATRYOSHKA RUN: A EULERIAN REFINEMENT STRATEGY TO STUDY THE STATISTICS OF TURBULENCE IN VIRIALIZED COSMIC STRUCTURES vol.782, pp.1, 2014, https://doi.org/10.1088/0004-637X/782/1/21
  18. FARADAY ROTATION MEASURE DUE TO THE INTERGALACTIC MAGNETIC FIELD vol.723, pp.1, 2010, https://doi.org/10.1088/0004-637X/723/1/476
  19. Cosmological Shock Waves in the Large‐Scale Structure of the Universe: Nongravitational Effects vol.669, pp.2, 2007, https://doi.org/10.1086/521717
  20. MAGIC GAMMA-RAY TELESCOPE OBSERVATION OF THE PERSEUS CLUSTER OF GALAXIES: IMPLICATIONS FOR COSMIC RAYS, DARK MATTER, AND NGC 1275 vol.710, pp.1, 2010, https://doi.org/10.1088/0004-637X/710/1/634
  21. Physical viscosity in smoothed particle hydrodynamics simulations of galaxy clusters vol.371, pp.3, 2006, https://doi.org/10.1111/j.1365-2966.2006.10752.x
  22. Effect of a chameleon scalar field on the cosmic microwave background vol.80, pp.6, 2009, https://doi.org/10.1103/PhysRevD.80.064016
  23. Strong Magnetization Measured in the Cool Cores of Galaxy Clusters vol.113, pp.7, 2014, https://doi.org/10.1103/PhysRevLett.113.071302
  24. Fractional polarization as a probe of magnetic fields in the intra-cluster medium vol.530, 2011, https://doi.org/10.1051/0004-6361/201016298
  25. SPIRAL FLOWS IN COOL-CORE GALAXY CLUSTERS vol.753, pp.2, 2012, https://doi.org/10.1088/0004-637X/753/2/120
  26. Observations of Extended Radio Emission in Clusters vol.134, pp.1-4, 2008, https://doi.org/10.1007/s11214-008-9311-x
  27. PROPAGATION OF ULTRAHIGH ENERGY NUCLEI IN CLUSTERS OF GALAXIES: RESULTING COMPOSITION AND SECONDARY EMISSIONS vol.707, pp.1, 2009, https://doi.org/10.1088/0004-637X/707/1/370
  28. Magnetic turbulence in cool cores of galaxy clusters vol.453, pp.2, 2006, https://doi.org/10.1051/0004-6361:20053518
  29. THE TIES THAT BIND? GALACTIC MAGNETIC FIELDS AND RAM PRESSURE STRIPPING vol.795, pp.2, 2014, https://doi.org/10.1088/0004-637X/795/2/148
  30. TURBULENT AMPLIFICATION AND STRUCTURE OF THE INTRACLUSTER MAGNETIC FIELD vol.817, pp.2, 2016, https://doi.org/10.3847/0004-637X/817/2/127
  31. A non-ideal magnetohydrodynamic gadget: simulating massive galaxy clusters vol.418, pp.4, 2011, https://doi.org/10.1111/j.1365-2966.2011.19523.x
  32. PROBING THE OFF-STATE OF CLUSTER GIANT RADIO HALOS vol.740, pp.1, 2011, https://doi.org/10.1088/2041-8205/740/1/L28
  33. Radio galaxies and their magnetic fields out to z ≤ 3 vol.444, pp.1, 2014, https://doi.org/10.1093/mnras/stu1411
  34. Nonthermal Phenomena in Clusters of Galaxies vol.134, pp.1-4, 2008, https://doi.org/10.1007/s11214-008-9314-7
  35. Nonlinear dynamo in the intracluster medium vol.35, pp.10, 2018, https://doi.org/10.1088/1361-6382/aab634
  36. Diffuse Radio Emission from Galaxy Clusters vol.215, pp.1, 2019, https://doi.org/10.1007/s11214-019-0584-z