• Title/Summary/Keyword: magnetic films

Search Result 1,264, Processing Time 0.025 seconds

Structural and Magnetic Properties of perpendicular Recording Medium CoCrMo thin Film (수직자기기록매체 CoCrMo 박막의 구조와 자기적 성질)

  • 남인탁;홍양기
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.46-46
    • /
    • 1988
  • Structural and magnetic properties of Co-Cr-Mo films were investigated in connection with sputtering conditions. Films were prepared using a convention RF sputtering system. X-ray diffractometry, scanning electron microscopy and transmission electron microscopy were employed to investigate structure properties. Vibrating sample magnetometry was used for coercivity and saturation magnetization measurements. Co-Cr-Mo films displayed reasonable values of perpendicular coercivity and saturation magnetization for perpendicular recording media and showed good perpendicular orientation of the hcp c-axis to the film surface. Perpendicular coercivity was strongly dependent upon substrate technique showed better c-axis orientation than hose using the stationary substrate. Co-Cr-Mo films of 2.9 at. % Mo content showed maximum perpendicular coercivity and saturation magnetization. The films deposited at lower Ar pressure showed good magnetic properties. There was no explicit relationship between the columnar structure and c-axis orientation. Co-Cr-Mo films was found to have suitable structural and magnetic properties for perpendicular recording media.

  • PDF

Ferromagnetic Properties in Diluted Magnetic Semiconductors (Al,Mn)N grown by PEMBE

  • Ham, Moon-Ho;Myoung, Jae-Min
    • Transactions on Electrical and Electronic Materials
    • /
    • v.7 no.1
    • /
    • pp.12-15
    • /
    • 2006
  • We present the structural, magnetic, and electrical properties in the (Al,Mn)N films with various Mn concentrations grown by plasma-enhanced molecular beam epitaxy. X-ray diffraction analyses reveal that the (Al,Mn)N films have the wurtzite structure without secondary phases. All (Al,Mn)N films showed the ferromagnetic ordering. Particularly, ($Al_{1-x}Mn_{x}$)N film with x = 0.028 exhibited the highest magnetic moment per Mn atom at room temperature. Since all the films exhibit the insulating characteristics, the origin of ferromagnetism in (Al,Mn)N might be attributed to either indirect exchange interaction caused by virtual electron excitations from Mn acceptor level to the valence band within the samples or a percolation of bound magnetic polarons arisen from exchange interaction of localized carriers with magnetic impurities in a low carrier density regime.

A study on magnetic layer thickness effects on magnetic properties of CoCrPt/Ti perpendicular media.

  • M. S. Hwang;Lee, T. D.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.369-376
    • /
    • 2000
  • Change of magnetic properties in CoCrPt/Ti perpendicular media with varying CoCrPt films thickness has been studied. As CoCrPt films thickness increase, the Ms(magnetization saturation) drastically increases at thinner thickness and gradually increases with further increase in thickness from 25nm. This Ms behaviour is associated with primarily the formation of "amorphous-like" reacted layer by intermixing of CoCrPt and Ti at CoCrPt/Ti interface and secondarily change of Cr segregation mode with varying the CoCrPt films thickness. Magnetic domain structure distinctively changes with increasing CoCrPt magnetic layer(ML) thickness. Also the strength of exchange coupling measured from the slope in demagnetizing region in M-H loop changes with ML thickness. Details of the above magnetic properties will be discussed. The expansion of lattice parameters a and c at thinner thickness suggests that Cr segregation mode may be connected with the residual stress of the films. Finally, negative nucleation field(Hn) behaviour with the exchange slope will be reported.

  • PDF

Magneto-impedance effect of CoFeSiBNi amorphous magnetic films (CoFeSiBNi 아몰퍼스 합금의 자기-임피던스 효과)

  • Lee, Seung-Hun;Park, Byung-Kyu;Hwang, Sung-Woo;Moon, Sung
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.389-393
    • /
    • 2007
  • Soft ferromagnetic materials are very useful for many sensors using magnetic materials demanding high permeability, low coercivity and low hysteresis loss. Among them, FeCoSiBNi amorphous magnetic films show a good impedance change (about 5.01 %/Oe, at 10 MHz) by the exterinal magnetic field in this experiment. The magnetic films are produced by melt-spun method, one of the rapid solidification process. Ribbon shape wires were made from the films, and let them annealed in DC magnetic field to increase the maximum Giant Magneto Impedance ratio. Field annealing decreases the stress and changes the effective anisotropy. Thus, we can find that the impedance change (200.47 %) is improved and the fabricated magnetic wire has characteristics of good sensor element.

MAGNETIC PROPERTIES OF GRANULAR Fe-SiO FILMS

  • Furubayashi, Takao;Nakatani, Isao
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.474-477
    • /
    • 1995
  • Granular Fe-SiO films were prepared by co-evaporating in a vacuum. Magnetic properties of the films were investigated by $M\"{o}ssbauer$ and magnetization measurments. The $M\"{o}ssbauer$ data suggest that the films consist of amorphous Fe-Si alloy particles with the size of nanometers. Superparamagnetic magnetization curves were well reproduced by considering the distribution of particle size and the magnetic dipole interaction between particles as the mean field.

  • PDF

Magnetic Properties of Al-Co-N Thin Films Dispersed with Co Particles

  • Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.3-9
    • /
    • 2008
  • Al-Co-N thin films, Al-Co-N/Al-N and Al-Co-N/Al-Co multilayers containing various amounts of Co content were deposited by using a two-facing targets type dc sputtering (TFTS) system. The films were also annealed successively and isothermally at different annealing temperatures. Irrespective of Co content and preparation methods, all the as-deposited films were observed non-magnetized. It was found that annealing conditions can control the magnetic and electrical properties as well as the microstructure of the films.

Wet Etch Characteristics of Magnetic Thin Films (자성 박막의 습식 식각 특성)

  • 변요한;정지원
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.2
    • /
    • pp.105-109
    • /
    • 2002
  • The wet etching characteristics of magnetic materials such as NiFe and CoFe were investigated in terms of etch rate and etch profile by using variouus etching solutions (etchants). Among the various etching solutions, HNO$_3$, HCl, and H$_2$SO$_4$were selected for the etching of magnetic materials and showed distinct results. In the case of NiFe films, faster etch rate were obtained with HNO$_3$solution. When NiFe films ere etched with HCl solution, white etch residues were found on the surface of etched films. From FEAES analysis of these etch residues, they were proved to be by-product from the reaction of NiFe with Cl element. CoFe thin films showed the similar trend to the case of NiFe films. They were etched fast in HNO$_3$ solution while Chl solution represented slow etching. The etch profiles of CoFe films showed smooth etch profile but revealed the partial etching around the patterns in HNO$_3$solution of relatively high concentration. It was observed that the etched surface was clean and smooth, and that white etch residues were also remained on the etched films.

Microstructure and Magnetic properties of $Ti_{1-x}Co_xO_2$ Magnetic semiconductor thin films by Metal Organic Chemical Vapor Deposition (유기금속화학기상증착법으로 제조된 자성반도체 $Ti_{1-x}Co_xO_2$ 박막의 미세구조 및 자기적 특성)

  • Seong, Nak-Jin;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.155-159
    • /
    • 2003
  • Polycrystalline $Ti_{1-x}Co_xO_2$ thin films on $SiO_2$ (200 nm)/Si (100) substrates were prepared using liquid-delivery metalorganic chemical vapor deposition. Microstructures and ferromagnetic properties were investigated as a function of doped Co concentration. Ferromagnetic behaviors of polycrystalline films were observed at room temperature, and the magnetic and structural properties strongly depended on the Co distribution, which varied widely with doped Co concentration. The annealed $Ti_{1-x}Co_xO_2$ thin films with $x{\leq}0.05$ showed a homogeneous structure without any clusters, and pure ferromagnetic properties of thin films are only attributed to the $Ti_{1-x}Co_xO_2$ (TCO) phases. On the other hand, in case of thin films above x=0.05, Co clusters formed in a homogeneous $Ti_{1-x}Co_xO_2$ Phase, and the overall ferromagnetic (FM) properties depended on both $FM_{TCO}$ and $FM_{Co}$. Co clusters with about 10nm-150nm size decreased the value of Mr (the remanent magnetization) and increased the saturation magnetic field.

  • PDF

SOFT MAGNETISM OF Co-Zr AND Fe-Co FILMS WITH LARGE SATURATION MAGNETIZATION

  • Suemitsu, Katsumi;Nakagawa, Shigeki;Naoe, Masahiko
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.6
    • /
    • pp.628-633
    • /
    • 1996
  • Large saturation magnetization $4pM_s$ is essentially required for soft magnetic thin layers used in magnetic recording devices. Amorphous Co-based alloys and Fe-Co alloys may be regarded as one of the candidates for soft magnetic materials which possess large $4\piM_s$. Some preparation process to improve soft magnetism of these films were performed in this study. Addition of Ta seemed to be effective to change the magnetostriction constant $\lambda$ from positive value to negative one. The magnetoelastic energy $K_e$ is strongly dependent on $\lambda$. $(Co_{95.7}Zr_{4.3})_{100-x}Ta_x$ films with $K_e$ of negative value have sufficiently soft magnetic characteristics. $Fe_{90}Co_{10}$ alloy exhibits extremely large $4\piM_s$, of about 24 kG. Addition of N and Ta to $Fe_{90}Co_{10}$ films improved the soft magnetism of them. The $Fe_{82.0}Co_{7.6}Ta_{10.4}$:N/Ti multilayered films exhibit better soft magnetic properties and better thermal stability than Fe-Co-Ta:N singlelayer films.

  • PDF

Magnetotransport of Be-doped GaMnAs (GaMnAs의 Be 병행 도핑에 의한 자기 수송 특성 연구)

  • Im W. S.;Yoon T. S.;Yu F. C.;Gao C. X.;Kim D. J.;Ibm Y. E.;Kim H. J.;Kim C. S.;Kim C. O.
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • Motivated by the enhanced magnetic properties of Mg-codoped GaMnN ferromagnetic semiconductors, Be-codoped GaMnAs films were grown via molecular beam epitaxy with varying Mn flux at a fixed Be flux. The structural, electrical, and magnetic properties were investigated. GaAs:(Mn,Be) films showed metallic behavior while GaAs:Mn films showed semiconducting behavior as determined by the temperature dependent resistivity measurements. The Hall-effect measurements with varying magnetic field showed clear anomalous Hall effect up to room temperature proving ferromagnetism and magnetotransport in the GaAs:(Mn,Be) films. Planar Hall resistance measurement also confirmed the properties. The dramatic enhancement of the Curie temperature in GaMnAs system was attributed to Be codoping in the GaMnAs films as well as MnAs precipitation.