• Title/Summary/Keyword: magnetic entropy

Search Result 63, Processing Time 0.022 seconds

Entropy analysis in a cilia transport of nanofluid under the influence of magnetic field

  • Abrar, Muhammad N.;Haq, Rizwan Ul;Awais, Muhammad;Rashid, Irfan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.8
    • /
    • pp.1680-1688
    • /
    • 2017
  • In this study, analysis is performed on entropy generation during cilia transport of water based titanium dioxide nanoparticles in the presence of viscous dissipation. Moreover, thermal heat flux is considered at the surface of a channel with ciliated walls. Mathematical formulation is constructed in the form of nonlinear partial differential equations. Making use of suitable variables, the set of partial differential equations is reduced to coupled nonlinear ordinary differential equations. Closed form exact solutions are obtained for velocity, temperature, and pressure gradient. Graphical illustrations for emerging flow parameters, such as Hartmann number (Ha), Brinkmann number (Br), radiation parameter (Rn), and flow rate, have been prepared in order to capture the physical behavior of these parameters. The main goal (i.e., the minimizing of entropy generation) of the second law of thermodynamics can be achieved by decreasing the magnitude of Br, Ha and ${\Lambda}$ parameters.

Double magnetic entropy change peaks and high refrigerant capacity in Gd1-xHoxNi compounds in the melt-spun form

  • Jiang, Jun-fan;Ying, Hao;Feng, Tang-fu;Sun, Ren-bing;Li, Xie;Wang, Fang
    • Current Applied Physics
    • /
    • v.18 no.12
    • /
    • pp.1605-1608
    • /
    • 2018
  • $Gd_{1-x}Ho_xNi$ melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature ($T_C$) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from $T_C$, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (${\Delta}S_M$) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ${\Delta}S_M$ around $T_C$ is almost same. The other maximum of ${\Delta}S_M$ around SRO transition, however, had significantly positive relationship with x. It reached a maximum about $8.2J\;kg^{-1}\;K^{-1}$ for x = 0.8. Thus double large ${\Delta}S_M$ peaks were obtained in $Gd_{1-x}Ho_xNi$ melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of $622J\;kg^{-1}$ for x = 0.6. $Gd_{1-x}Ho_xNi$ ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.

Magnetic Properties and Magnetocaloric Effect in Ordered Double Perovskites Sr1.8Pr0.2FeMo1-xWxO6

  • Hussain, Imad;Anwar, Mohammad Shafique;Khan, Saima Naz;Lee, Chan Gyu;Koo, Bon Heun
    • Korean Journal of Materials Research
    • /
    • v.28 no.8
    • /
    • pp.445-451
    • /
    • 2018
  • We report the structural, magnetic and magnetocaloric properties of $Sr_{1.8}Pr_{0.2}FeMo_{1-x}W_xO_6$($0.0{\leq}x{\leq}0.4$) samples prepared by the conventional solid state reaction method. The X-ray diffraction analysis confirms the formation of the tetragonal double perovskite structure with a I4/mmm space group in all the synthesized samples. The temperature dependent magnetization measurements reveal that all the samples go through a ferromagnetic to paramagnetic phase transition with an increasing temperature. The Arrott plot obtained for each synthesized sample demonstrates the second order nature of the magnetic phase transition. A magnetic entropy change is obtained from the magnetic isotherms. The values of maximum magnetic entropy change and relative cooling power at an applied field of 2.5 T are found to be $0.40Jkg^{-1}K^{-1}$ and $69Jkg^{-1}$ respectively for the $Sr_{1.8}Pr_{0.2}FeMoO_6$ sample. The tunability of magnetization and excellent magnetocaloric features at low applied magnetic field make these materials attractive for use in magnetic refrigeration technology.

Theoretical consideration on magnetic entropy changes in CMR materials

  • Phan, Manh-Huong;Pham, Van-Thai;Yu, Seong-Cho
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2002.12a
    • /
    • pp.120-120
    • /
    • 2002
  • In past years, theoretical controversy involving a realistic and physical mechanism that leads to large magnetic entropy change as a large magneto-caloric effect in colossal magneto-resistance (CMR) materials had been left as an open question. Thus it is desirable to clarify this problem. (omitted)

  • PDF

Large Magnetic Entropy Change in La0.55Ce0.2Ca0.25MnO3 Perovskite

  • Anwar, M.S.;Kumar, Shalendra;Ahmed, Faheem;Arshi, Nishat;Kim, G.W.;Lee, C.G.;Koo, Bon-Heun
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.457-460
    • /
    • 2011
  • In this paper, magnetic property and magnetocaloric effect (MCE) in perovskite manganites of the type $La_{(0.75-X)}Ce_XCa_{0.25}MnO_3$ (x = 0.0, 0.2, 0.3 and 0.5) synthesized by using the standard solid state reaction method have been reported. From the magnetic measurements as a function of temperature and applied magnetic field, we have observed that the Curie temperature ($T_C$) of the prepared samples strongly dependent on Ce content and was found to be 255, 213 and 150 K for x = 0.0, 0.2 and 0.3, respectively. A large magnetocaloric effect in vicinity of $T_C$ has been observed with a maximum magnetic entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) of 3.31 and 6.40 J/kgK at 1.5 and 4 T, respectively, for $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$. In addition, relative cooling power (RCP) of the sample under the magnetic field variation of 1.5 T reaches 59 J/kg. These results suggest that $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$ compound could be a suitable candidate as working substance in magnetic refrigeration at 213 K.

Magnetic and Magnetocaloric Properties of (Gd1-xCex)Al2(x = 0, 0.25, 0.5, 0.75) Compounds

  • Gencer, H.;Izgi, T.;Kolat, V.S.;Kaya, A.O.;Atalay, S.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.337-341
    • /
    • 2011
  • The magnetic and magnetocaloric properties of $Gd_{1-x}Ce_xAl_2$ (x = 0, 0.25, 0.5, 0.75) intermetallic compounds alloys have been investigated in detail for the first time. XRD patterns indicated that all the samples were crystallized in a single phase with $MgCu_2$-type structure (Laves phase). Ce substitution for Gd increased the lattice parameters and decreased the Curie temperature from 163 K for x = 0 to 37 K for x = 0.75. A maximum entropy change of 3.82 J/kg K was observed when a 2 T magnetic field was applied to the x = 0 sample. This entropy change decreased with increasing Ce content to 2.04 J/kg K for the x = 0.75 sample.

Magnetic and Magnetocaloric Properties of Perovskite Pr0.5Sr0.5-xBaxMnO3

  • Hua, Sihao;Zhang, Pengyue;Yang, Hangfu;Zhang, Suyin;Ge, Hongliang
    • Journal of Magnetics
    • /
    • v.18 no.4
    • /
    • pp.386-390
    • /
    • 2013
  • This paper studies the effects of A-site substitution by barium on the magnetic and magnetocaloric properties of $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ (x = 0, 0.04, 0.08 and 0.1). The tetragonal crystal structures of the samples are confirmed by room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ba doping content has been investigated. The samples of all doping contents undergo the second order phase transition. As the concentration of Ba increased, the maximum entropy change ($|{\Delta}S_M|_{max}$) increased gradually, from 1.15 J $kg^{-1}$ $K^{-1}$ (x = 0) to 1.36 J $kg^{-1}$ $K^{-1}$ (x = 0.1), in a magnetic field change of 1.5 T. The measured value of $T_C$ is 265 K, 275 K, 260 K and 250 K for x = 0, 0.04, 0.08 and 0.1, respectively. If combining these samples for magnetic refrigeration, the temperature range of ~220 K and 290 K, where |${\Delta}S_M$|max is stable at ~1.27 J $kg^{-1}$ $K^{-1}$ and RCP = 88.9 $J{\cdot}kg^{-1}$ for ${\Delta}H$ = 1.5 T. $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ compounds, are expected to be suitable for magnetic-refrigeration application due to these magnetic properties.

Magnetic resonance imaging texture analysis for the evaluation of viable ovarian tissue in patients with ovarian endometriosis: a retrospective case-control study

  • Lee, Dayong;Lee, Hyun Jung
    • Journal of Yeungnam Medical Science
    • /
    • v.39 no.1
    • /
    • pp.24-30
    • /
    • 2022
  • Background: Texture analysis has been used as a method for quantifying image properties based on textural features. The aim of the present study was to evaluate the usefulness of magnetic resonance imaging (MRI) texture analysis for the evaluation of viable ovarian tissue on the perfusion map of ovarian endometriosis. Methods: To generate a normalized perfusion map, subtracted T1-weighted imaging (T1WI), T1WI and contrast-enhanced T1W1 with sequences were performed using the same parameters in 25 patients with surgically confirmed ovarian endometriosis. Integrated density is defined as the sum of the values of the pixels in the image or selection. We investigated the parameters for texture analysis in ovarian endometriosis, including angular second moment (ASM), contrast, correlation, inverse difference moment (IDM), and entropy, which is equivalent to the product of area and mean gray value. Results: The perfusion ratio and integrated density of normal ovary were 0.52±0.05 and 238.72±136.21, respectively. Compared with the normal ovary, the affected ovary showed significant differences in total size (p<0.001), fractional area ratio (p<0.001), and perfusion ratio (p=0.010) but no significant differences in perfused tissue area (p=0.158) and integrated density (p=0.112). In comparison of parameters for texture analysis between the ovary with endometriosis and the contralateral normal ovary, ASM (p=0.004), contrast (p=0.002), IDM (p<0.001), and entropy (p=0.028) showed significant differences. A linear regression analysis revealed that fractional area had significant correlations with ASM (r2=0.211), IDM (r2=0.332), and entropy (r2=0.289). Conclusion: MRI texture analysis could be useful for the evaluation of viable ovarian tissues in patients with ovarian endometriosis.

FINITE TEMPERATURE EFFECTS ON SPIN POLARIZATION OF NEUTRON MATTER IN A STRONG MAGNETIC FIELD

  • Isayev, Alexander A.;Yang, Jong-Mann
    • Journal of The Korean Astronomical Society
    • /
    • v.43 no.5
    • /
    • pp.161-168
    • /
    • 2010
  • Magnetars are neutron stars possessing a magnetic field of about $10^{14}-10^{15}$ G at the surface. Thermodynamic properties of neutron star matter, approximated by pure neutron matter, are considered at finite temperature in strong magnetic fields up to $10^{18}$ G which could be relevant for the inner regions of magnetars. In the model with the Skyrme effective interaction, it is shown that a thermodynamically stable branch of solutions for the spin polarization parameter corresponds to the case when the majority of neutron spins are oriented opposite to the direction of the magnetic field (i.e. negative spin polarization). Moreover, starting from some threshold density, the self-consistent equations have also two other branches of solutions, corresponding to positive spin polarization. The influence of finite temperatures on spin polarization remains moderate in the Skyrme model up to temperatures relevant for protoneutron stars. In particular, the scenario with the metastable state characterized by positive spin polarization, considered at zero temperature in Phys. Rev. C 80, 065801 (2009), is preserved at finite temperatures as well. It is shown that, above certain density, the entropy for various branches of spin polarization in neutron matter with the Skyrme interaction in a strong magnetic field shows the unusual behavior, being larger than that of the nonpolarized state. By providing the corresponding low-temperature analysis, we prove that this unexpected behavior should be related to the dependence of the entropy of a spin polarized state on the effective masses of neutrons with spin up and spin down, and to a certain constraint on them which is violated in the respective density range.

Control of Working Temperature of Isothermal Magnetic Entropy Change in La0.8Nd0.2(Fe0.88Si0.12)13 by Hydrogen Absorption for Magnetic Refrigerants

  • Fujieda, S.;Fujita, A.;Fukamichi, K.;Suzuki, S.
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.150-154
    • /
    • 2013
  • $La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ and their hydrides were investigated to obtain large magnetocaloric effects (MCEs) in a wide temperature range, including room temperature, for applications in magnetic refrigents. Since the magnetization change due to the itinerant-electron metamagentic (IEM) transition for $La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ becomes larger with increasing z, the isothermal magnetic entropy change ${\Delta}S_m$ and the relative cooling power (RCP) are enhanced. In addition, the Curie temperatrue $T_C$ of $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}$ is increased from 193 to 319 K by hydrogen absorption, with the IEM transition. The maximum value of $-{\Delta}S_m$, $-{\Delta}S{_m}^{max}$, in a magnetic field change of 2 T for $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}H_{1.1}$ is about 23 J/kg K at $T_C$ = 288 K, which is larger than that of 19 J/kg K at $T_C$ = 276 K for $La(Fe_{0.88}Si_{0.12})_{13}H_{1.0}$. The value of RCP = 179 J/kg of the former is also larger than 160 J/kg of the latter. It is concluded that the partial substitution of Nd improves MCEs in a wide temperautre range, including room temperature.