DOI QR코드

DOI QR Code

Control of Working Temperature of Isothermal Magnetic Entropy Change in La0.8Nd0.2(Fe0.88Si0.12)13 by Hydrogen Absorption for Magnetic Refrigerants

  • Fujieda, S. (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University) ;
  • Fujita, A. (Department of Materials Science, Graduate School of Engineering, Tohoku University) ;
  • Fukamichi, K. (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University) ;
  • Suzuki, S. (Institute of Multidisciplinary Research for Advanced Materials, Tohoku University)
  • Received : 2012.05.31
  • Accepted : 2012.08.24
  • Published : 2013.06.30

Abstract

$La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ and their hydrides were investigated to obtain large magnetocaloric effects (MCEs) in a wide temperature range, including room temperature, for applications in magnetic refrigents. Since the magnetization change due to the itinerant-electron metamagentic (IEM) transition for $La_{1-z}Nd_z(Fe_{0.88}Si_{0.12})_{13}$ becomes larger with increasing z, the isothermal magnetic entropy change ${\Delta}S_m$ and the relative cooling power (RCP) are enhanced. In addition, the Curie temperatrue $T_C$ of $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}$ is increased from 193 to 319 K by hydrogen absorption, with the IEM transition. The maximum value of $-{\Delta}S_m$, $-{\Delta}S{_m}^{max}$, in a magnetic field change of 2 T for $La_{0.8}Nd_{0.2}(Fe_{0.88}Si_{0.12})_{13}H_{1.1}$ is about 23 J/kg K at $T_C$ = 288 K, which is larger than that of 19 J/kg K at $T_C$ = 276 K for $La(Fe_{0.88}Si_{0.12})_{13}H_{1.0}$. The value of RCP = 179 J/kg of the former is also larger than 160 J/kg of the latter. It is concluded that the partial substitution of Nd improves MCEs in a wide temperautre range, including room temperature.

Keywords

References

  1. S. Fujieda, A. Fujita, and K. Fukamichi, Appl. Phys. Lett. 81, 1276 (2002). https://doi.org/10.1063/1.1498148
  2. A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, Phys. Rev. B 67, 104416 (2003). https://doi.org/10.1103/PhysRevB.67.104416
  3. H. Wada, S. Tomekawa, and M. Shiga, Cryogenics 39, 915 (1999). https://doi.org/10.1016/S0011-2275(99)00121-6
  4. N. H. Duc, D. T. Kim Anh, and P. E. Brommer, Physica B: Cond. Mat. 319, 1 (2002). https://doi.org/10.1016/S0921-4526(02)01099-2
  5. A. Fujita, Y. Akamatsu, and K. Fukamichi, J. Appl. Phys. 85, 4756 (1999). https://doi.org/10.1063/1.370471
  6. S. Fujieda, A. Fujita, K. Fukamichi, Y, Yamazaki, and Y. Iijima, Appl. Phys. Lett. 79, 653 (2001). https://doi.org/10.1063/1.1388157
  7. S. Fujieda, A. Fujita, K. Fukamichi, N. Hirano, and S. Nagaya, J. Alloys Compd. 408, 1165 (2006).
  8. S. Fujieda, A. Fujita, and K. Fukamichi, J. Appl. Phys. 102, 023907 (2007). https://doi.org/10.1063/1.2753590
  9. S. Fujieda, A. Fujita, N. Kawamoto, and K. Fukamichi, Appl. Phys. Lett. 89, 062504 (2006). https://doi.org/10.1063/1.2227631
  10. S. Fujieda, A. Fujita, and K. Fukamichi, Mater. Trans. 49, 1994 (2008). https://doi.org/10.2320/matertrans.MAW200820
  11. F. X. Hu, B. G. Shen, J. R. Sun, G. J. Wang, and Z. H. Cheng, Appl. Phys. Lett. 80, 826 (2002). https://doi.org/10.1063/1.1447592
  12. B. G. Shen, J. R. Sun, F. X. Hu, H. W. Zhang, and Z. H. Cheng, Adv. Mater. 21, 4545 (2009). https://doi.org/10.1002/adma.200901072
  13. X. B. Liu, X. D. Liu, and Z. Altounian, J. Appl. Phys. 98, 113904 (2005). https://doi.org/10.1063/1.2137884
  14. M. Balli, D. Fruchart, and D. Gignoux, Appl. Phys. Lett. 92, 232505 (2008). https://doi.org/10.1063/1.2939098
  15. J. Lyubina, O. Gutfleisch, M. D. Kuz'min, and M. Richter, J. Magn. Magn. Mater. 321, 3571 (2009). https://doi.org/10.1016/j.jmmm.2008.03.063
  16. D. T. Kim Anh, N. P. Thuy, N. H. Duc, T. T. Nhien, and N. V. Nong, J. Magn. Magn. Mater. 262, 427 (2003). https://doi.org/10.1016/S0304-8853(03)00073-8
  17. S. Fujieda, A. Fujita, and K. Fukamichi, Mater. Sci. Forum 561, 1093 (2007).
  18. A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, and T. Goto, Phys. Rev. B 65, 014410 (2002).
  19. A. Fujita, S. Fujieda, and K. Fukamichi, J. Magn. Magn. Mater. 272, e629 (2004).
  20. W. Cui, W. Liu, and Z. Zhang, Appl. Phys. Lett. 96, 222509 (2010). https://doi.org/10.1063/1.3446843
  21. H. Yamada and T. Goto, Phys. Rev. B 68, 184417 (2003). https://doi.org/10.1103/PhysRevB.68.184417
  22. K. A. Gschneidner, Jr. and V. K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000). https://doi.org/10.1146/annurev.matsci.30.1.387
  23. A. Fujita, S. Fujieda, and K. Fukamichi, J. Magn. Magn. Mater. 310, e1006 (2007). https://doi.org/10.1016/j.jmmm.2006.10.962