Browse > Article
http://dx.doi.org/10.4283/JMAG.2013.18.4.386

Magnetic and Magnetocaloric Properties of Perovskite Pr0.5Sr0.5-xBaxMnO3  

Hua, Sihao (College of Material Science and Engineering, China Jiliang University)
Zhang, Pengyue (College of Material Science and Engineering, China Jiliang University)
Yang, Hangfu (College of Material Science and Engineering, China Jiliang University)
Zhang, Suyin (College of Material Science and Engineering, China Jiliang University)
Ge, Hongliang (College of Material Science and Engineering, China Jiliang University)
Publication Information
Abstract
This paper studies the effects of A-site substitution by barium on the magnetic and magnetocaloric properties of $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ (x = 0, 0.04, 0.08 and 0.1). The tetragonal crystal structures of the samples are confirmed by room temperature X-ray diffraction. The dependence of the Curie temperature ($T_C$) and the magnetic entropy change (${\Delta}S_M$) on the Ba doping content has been investigated. The samples of all doping contents undergo the second order phase transition. As the concentration of Ba increased, the maximum entropy change ($|{\Delta}S_M|_{max}$) increased gradually, from 1.15 J $kg^{-1}$ $K^{-1}$ (x = 0) to 1.36 J $kg^{-1}$ $K^{-1}$ (x = 0.1), in a magnetic field change of 1.5 T. The measured value of $T_C$ is 265 K, 275 K, 260 K and 250 K for x = 0, 0.04, 0.08 and 0.1, respectively. If combining these samples for magnetic refrigeration, the temperature range of ~220 K and 290 K, where |${\Delta}S_M$|max is stable at ~1.27 J $kg^{-1}$ $K^{-1}$ and RCP = 88.9 $J{\cdot}kg^{-1}$ for ${\Delta}H$ = 1.5 T. $Pr_{0.5}Sr_{0.5-x}Ba_{x}MnO_{3}$ compounds, are expected to be suitable for magnetic-refrigeration application due to these magnetic properties.
Keywords
magnetocaloric effect; manganite; magnetic properties; curie temperature;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. K. Pecharsky and K. A. Gschneidner, J. Magn. Magn. Mater. 200, 44 (1999).   DOI   ScienceOn
2 K. A. Gschneidner and V. K. Pecharsky, Rep. Prog. Phys. 68, 1479 (2005).   DOI   ScienceOn
3 E. Bruck, J. Phys. D 38, R381 (2005).   DOI   ScienceOn
4 M. H. Phan and S. C Yu, J. Magn. Magn. Mater. 308, 325 (2007).   DOI   ScienceOn
5 S. Yu. Dankov, A. M. Tishin, V. K. Pecharsky, and K. A. Gschneidner Jr., Phys. Rev. B 57, 3478 (1998).
6 F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, and X. X. Zhang, Appl. Phys. Lett. 78, 3675 (2001).   DOI   ScienceOn
7 V. K. Pecharsky, and K. A. Gschneidner Jr., Appl. Phys. Lett. 70, 3299 (1997).   DOI   ScienceOn
8 O. Tegus, E. Bruck, K. H. J. Buschow, and F. R. de Boer, Nature 415, 150 (2002).   DOI   ScienceOn
9 X. X. Zhang, J. Taiada, Y. Xin, G. F. Sunm, K. W. Wong, and X. Bohigas, Appl. Phys. Lett. 69, 3596 (1996).   DOI   ScienceOn
10 A. Szewczyk, H. Szymczak, A. Wisniewski, K. Piotrowski, R. Kartaszynski, B. Dabrowski, S. Kolesnik, and Z. Bukowski, Appl. Phys. Lett. 77, 1026 (2000).   DOI   ScienceOn
11 Y. Sun, X. Xu, and Y. H. Zhang, J. Magn. Magn. Mater. 219, 183 (2000).   DOI   ScienceOn
12 A. Biswas, T. Samanta, S. Benerjee, and I. Das, Appl. Phys. Lett. 94, 233109 (2009).   DOI   ScienceOn
13 T. Wu, and M. Mitchell, Phys. Rev. B 69, 100405(R) (2004).   DOI
14 S. Hebert, A. Maignan, V. Hardy, C. Martin, M. Hervieu, B. Raveau, R. Mahendiran, and P. Schiffer, Eur. Phys. J. B 29, 419 (2002).   DOI
15 R. Mahandiran, A. Maignan, S. Hebert, C. Martin, M. Hervieu, B. Raveau, J. F. Mitchell, and P. Schiffer, Phys. Rev. Lett. 89, 286602 (2002).   DOI   ScienceOn
16 H. F. Yang, P. Y. Zhang, Q. Wu, H. L. Ge, and M. X. Pan, J. Magn. Magn. Mater. 324, 3727 (2012).   DOI   ScienceOn
17 R. D. Shannon, Acta Cryst. 32, 751 (1976).   DOI
18 V. Franco, J. S. Blazquez, B. Ingale, and A. Conde, Mater. Res. 42, 305 (2012).   DOI   ScienceOn
19 J. Dhahri, A. Dhahri, and E. Dhahri, J. Magn. Magn. Mater. 321, 4128 (2009).   DOI   ScienceOn
20 N. Abdelmoula, J. Dhahri, K. Guidara, E. Dhahri, and J. C. Joubert, Phase Tran-sit. 70, 211 (1999).   DOI   ScienceOn
21 M. Moumen, A. Mehri, W. Chikhrouhou-Koubaa, M. Koubaa, and A. Cheikhrouhou, J. Alloys Compd. 509, 9084 (2011).   DOI   ScienceOn
22 Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett. 78, 1142 (1997).   DOI   ScienceOn
23 K. A. Gschneidner and V. K. Pecharsky, Annu. Rev. Mater. Sci. 30, 387 (2000).   DOI   ScienceOn
24 Y. D. Zhang, The-Long Phan, and S. C. Yu, J. Appl. Phys. 111, 07D703 (2012).   DOI
25 B. K. Banerjee, Phys. Lett. 12, 16 (1964).
26 S. Zemni, M. Baazaoui, Ja. Dhahri, H. Vincent, and M. Oumezzine, Materials Letters. 63, 489 (2009).   DOI   ScienceOn
27 J. Y. Fan, L. Pi, L. Zhang, W. Tong, and L. S. Ling, Physica B 406, 2289 (2011).   DOI   ScienceOn
28 V. K. Pecharsky and K. A. Gschneidner, J. Appl. Phys. 90, 4614 (2001).   DOI   ScienceOn
29 K. Cherif, S. Zemni, J. Dhahri, M. Oumezzine, M. Said, and H. Vincent, J. Alloys Compd. 432, 30 (2007).   DOI   ScienceOn
30 E. Pollert, Z. Jirak, J. Hejtmanek, A. Strejc, R. Kuzel, and V. Hardy, J. Magn. Magn. Mater. 246, 290 (2002).   DOI   ScienceOn
31 M-H Phan, S. B. Tian, S. C. Yu, and A. N. Ulyanov, J. Magn. Magn. Mater. 256, 306 (2003).   DOI   ScienceOn