DOI QR코드

DOI QR Code

Large Magnetic Entropy Change in La0.55Ce0.2Ca0.25MnO3 Perovskite

  • Anwar, M.S. (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Kumar, Shalendra (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Ahmed, Faheem (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Arshi, Nishat (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Kim, G.W. (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Lee, C.G. (School of Nano and Advanced Materials Engineering, Changwon National University) ;
  • Koo, Bon-Heun (School of Nano and Advanced Materials Engineering, Changwon National University)
  • Received : 2011.10.14
  • Accepted : 2011.11.09
  • Published : 2011.12.31

Abstract

In this paper, magnetic property and magnetocaloric effect (MCE) in perovskite manganites of the type $La_{(0.75-X)}Ce_XCa_{0.25}MnO_3$ (x = 0.0, 0.2, 0.3 and 0.5) synthesized by using the standard solid state reaction method have been reported. From the magnetic measurements as a function of temperature and applied magnetic field, we have observed that the Curie temperature ($T_C$) of the prepared samples strongly dependent on Ce content and was found to be 255, 213 and 150 K for x = 0.0, 0.2 and 0.3, respectively. A large magnetocaloric effect in vicinity of $T_C$ has been observed with a maximum magnetic entropy change (${\mid}{\Delta}S_M{\mid}_{max}$) of 3.31 and 6.40 J/kgK at 1.5 and 4 T, respectively, for $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$. In addition, relative cooling power (RCP) of the sample under the magnetic field variation of 1.5 T reaches 59 J/kg. These results suggest that $La_{0.55}Ce_{0.2}Ca_{0.25}MnO_3$ compound could be a suitable candidate as working substance in magnetic refrigeration at 213 K.

Keywords

References

  1. Jiyu Fan, Langsheng Ling, Bo Hong, Li Pi, and Yuheng Zhang, J. Magn. Magn. Mater. 321, 2838 (2009). https://doi.org/10.1016/j.jmmm.2009.04.027
  2. V. S. Kolat, H. Gencer, M. Gunes, and S. Atalay, Mater. Sci. Eng. B 140, 212 (2007). https://doi.org/10.1016/j.mseb.2007.05.002
  3. A. V. Kartashev, I. N. Flerov, N. V. Volkov, and K. A. Sablina, J. Magn. Magn. Mater. 322, 622 (2010). https://doi.org/10.1016/j.jmmm.2009.10.026
  4. Sami Kallel, Nabil Kallel, Octavio Pena, and Mohamed Oumezzine, Mater. Lett. 64, 1045 (2010). https://doi.org/10.1016/j.matlet.2010.02.005
  5. Z. B. Guo, Y. W. Du, J. S. Zhu, H. Huang, W. P. Ding, and D. Feng, Phys. Rev. Lett. 78, 1142 (1997). https://doi.org/10.1103/PhysRevLett.78.1142
  6. M. H. Phan, S. C. Yu, and N. H. Hur, Appl. Phys. Lett. 86, 072504 (2005). https://doi.org/10.1063/1.1867564
  7. Manh-Huong Phan and Seong-Cho Yu, J. Magn. Magn. Mater. 308, 325 (2007). https://doi.org/10.1016/j.jmmm.2006.07.025
  8. Z. M. Wang, G. Ni, Q. Y. Xu, H. Sang, and Y. W. Du, J. Appl. Phys. 90, 5689 (2001). https://doi.org/10.1063/1.1415055
  9. H. Chen, C. Lin, and D. S. Dai, J. Magn. Magn. Mater. 257, 254 (2003). https://doi.org/10.1016/S0304-8853(02)01176-9
  10. S. Othmani, R. Blel, M. bejar, M. sajieddine, E. Dhahri, and E. K. Hlil, Solid State Commun. 149, 969 (2009). https://doi.org/10.1016/j.ssc.2009.04.020
  11. N. Chau, D. H. Cuong, N. D. Tho, H. N. Nhat, N. H. Luong, and B. T. Cong, J. Magn. Magn. Mater. 272, 1292 (2004). https://doi.org/10.1016/j.jmmm.2003.12.074
  12. Nabil Kallel, Sami Kallel, Octavio Pena, and Mohamed Oumezzine, Solid State Sciences 11, 1494 (2009). https://doi.org/10.1016/j.solidstatesciences.2009.05.013
  13. R. D. Shannon, Acta Crystallogr., Sect. A 32, 751 (1976). https://doi.org/10.1107/S0567739476001551
  14. H. Chen, C. Lin, and D.S. Dai, J. Magn. Magn. Mater. 257, 254 (2003). https://doi.org/10.1016/S0304-8853(02)01176-9
  15. S. K. Banerjee, Phys. Lett. 12, 16 (1964).
  16. E. Bruck, J. Phys. D Appl. Phys. 38, R381 (2005). https://doi.org/10.1088/0022-3727/38/23/R01

Cited by

  1. Above room temperature magnetic transition and magnetocaloric effect in La0.66Sr0.34MnO3 vol.60, pp.10, 2012, https://doi.org/10.3938/jkps.60.1587
  2. Tuning of the magnetocaloric effect in La manganites vol.61, pp.11, 2012, https://doi.org/10.3938/jkps.61.1817
  3. Study of magnetic entropy change in La0.65Sr0.35Cu0.1Mn0.9O3 complex perovskite vol.30, pp.1-2, 2013, https://doi.org/10.1007/s10832-012-9711-x
  4. The interplay of Ca and Sr in the bulk magnetocaloric La0.7Sr(0.3−x)Ca x MnO3 (x = 0, 0.1 and 0.3) manganite vol.62, pp.12, 2013, https://doi.org/10.3938/jkps.62.1974
  5. Effect of Zn on the Magnetic and Magnetocaloric Properties of (0.95)La0.7Ca0.3MnO3/(0.05)Mn1−x Zn x Fe2O4 Composites vol.28, pp.11, 2015, https://doi.org/10.1007/s10948-015-3157-8
  6. Influence of Barium Doping on the Magnetic and Magnetocaloric Properties of Pr1−x Ba x MnO3 vol.28, pp.5, 2015, https://doi.org/10.1007/s10948-014-2933-1