• Title/Summary/Keyword: magnetic core

Search Result 969, Processing Time 0.026 seconds

NMR characterization of SRG3 SWIRM Domain Mutant Proteins.

  • Koh, Woo-Hyoung;Kim, Min-Tae;Moon, Sun-Jin;Lee, Weon-Tae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.13 no.1
    • /
    • pp.56-63
    • /
    • 2009
  • SWIRM domain, a core domain of SRG3 is well conserved in SW13, RSC8, and MOIRA family proteins. To understand structural basis for cellular functions of the SWIRM domain, we have initiated biochemical and structural studies on SWIRM domain and mutants using gelfiltration chromatography, circular dichroism and NMR spectroscopy. The structural properties of the mutant SWIRM domains (K34A and M75A) have been characterized, showing that the structures of both wild-type and mutant proteins are a-helical conformation. The data conclude that mutations at interaction sites of its binding partner protein do not affect its secondary and tertiary structure.

A New Method of Phase Transformation (새로운 위상변성 방법)

  • Sang Se Oh
    • 전기의세계
    • /
    • v.13 no.3
    • /
    • pp.38-41
    • /
    • 1964
  • This thesis is aimed to obtain efficiently economically any desired phases and single phase transformer without unbalance by using only a new transformer, applying the theory of rotating magnetic field. The brief construction and principle is as floow: two pieces of similar ring cores, triangular cores or polygonal cores are located on the upper and lower sides with equidistance. And the some number of similar leg cores, shaped a square-pillar or a sylinder, are arranged at equidistant of the core section. Ring windings or polyphase windings of AC machines are adopted as a winding method on the upper and lower cores. Three phase AC is applied to the primary windings on these cores so that the rotating magnetic field is induced on the cores and this magnetic fluxes pass through each of the secondary windings on the leg-cores with some difference in time.

  • PDF

gnetic Fields With Hysteresis Characteristics (히스테리시스 특성을 고려한 자계의 유한 요소 해석)

  • Jung, Hoon;Hong, Sun-Ki;Won, Jong-Soo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.12
    • /
    • pp.1033-1047
    • /
    • 1989
  • A finite element method for the analysis of magnetic fields with hysteresis characteristics is proposed. The method employs Preisach model to describe hysteresis of magnetic material, so that even multi-branch or minor-loop characteristics can be taken into account. The problem can be considered as the analysis of a nonlinear equation where magnetization depends not only on the present value of the magnetic field but also on the past values, and the problem can be solved by the iteration method. Measurements were carried out on soft ferrite EI core for the comparison with computer solution, and good agreements were obtained. is investigated. A theoretical approach to gait study is proposed in which the static stability margins for periodic gaits are expressed in terms of the kinematic gait formula. The effects fo the stride length on static stability are analyzed and the relations between static stability and initial body configurations are examined. It is shown that the moving velocity can be increased to some extent without affecting stability margins for a given initial body configuration. Computer simulations are performed to verify the analysis.

  • PDF

A Miniature Air-Bearing Positioning Stage with a Magnet-Moving Linear Motor (영구자석 이동형 선형 모터를 가진 초소형 공기베어링 스테이지)

  • Ro, Seung-Kook;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.8 s.197
    • /
    • pp.89-96
    • /
    • 2007
  • In this paper, a new air bearing stage with magnetic preload and a linear motor has been developed for the small precision machine systems. The new air bearing stage is unique in the sense that permanent magnets attached bottom of the iron core of table are used not only for preloading air bearings in vertical direction but also for generating thrust force by current of the coil at base. The characteristics of air bearings using porous pads were analyzed with numerical method, and the magnetic circuit model was derived for linear motor for calculating required preload force and thrust force. A prototype of single axis miniature stage with size of $120(W){\times}120(L){\times}50(H)\;mm^3$ was designed and fabricated and examined its performances, vertical stiffness, load capacity, thrust force and positioning resolution.

Mechanochemistry: from Mechanical Degradation to Novel Materials Properties

  • Sepelak, V.;Becker, K.D.
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.1
    • /
    • pp.19-28
    • /
    • 2012
  • High-energy mechanical action applied to solid leads to destruction and diminution to the nanosize level. But on the other hand, it can induce structural changes at the nanoscale and at the atomic level which can result in novel materials properties. In this contribution, case studies will be presented concerned with the tailoring of magnetic properties of mechanically treated nanomaterials. Emphasis is placed on materials that have been synthesized by mechanochemical means and on an improved understanding of their nanomagnetism in general. The associated local structural changes of the iron containing magnetic materials discussed in the examples have been studied most suitably by $^{57}Fe$ Mossbauer nuclear probe spectroscopy whose results are supplemented by measurements of the magnetic properties of the mechanosynthesized nanomaterials.

Magnetic Annealing of Amorphous Fe-B-Si Alloy (Fe-B-Si 비정질 합금의 자장중 열처리 효과)

  • Kang, Won-Koo;Kim, Yoon-Dong;Lee, Eun-Yong;Kim, Ki-Uk;Lee, Won-Jae;Min, Bok-Ki;Song, Jae-Sung;Hong, Jin-Wan;Yoon, Moon-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1990.07a
    • /
    • pp.236-238
    • /
    • 1990
  • For improving magnetic properties of the amorphous Fe-B-Si alloy, we annealed in a magnetic field oriented in the plane of the ribbon longitudinal to its long axis. By field annealing, coercive force and total core loss are reduced from 0.04 Oe to 0.02 Oe, and from 0.25 watt/kg to 0.15 watt/kg respectively comparing with non-field annealed specimen. These reductions were caused by the formation of $180^{\circ}$ domains parallel to the annealing field due to the induced anisotorpy.

  • PDF

Inspection of Non-metallic Inclusions in Thin Steel Sheets Using Magnetic Flux Leakage Method (누설자속법을 이용한 박강판의 결함탐상)

  • 임종수;손대락
    • Journal of the Korean Magnetics Society
    • /
    • v.10 no.6
    • /
    • pp.302-309
    • /
    • 2000
  • An MFL (Magnetic Flux Leakage) testing system has been developed in order to inspect the non-metallic inclusions in the thin steel sheets. We have made a differential type flux-gate magnetometer using the measurement of apparent coercive field strength of soft magnetic core. The specifications of the electromagnet was determined using FEM software, and MFL testing system with 3 axis degree of freedom was constructed. The feasibility testing for non-metallic inclusion was shown using the system. By digitizing MFL signal and using 2-D graphic display, we could identify various surface defects other than the inclusions.

  • PDF

Torque Ripple Reduction Using Torque Compensation Effect of an Asymmetric Rotor Design in IPM Motor

  • Hwang, Yong-Suk;Yoon, Myung-Hwan;Park, Jin-Cheol;Hong, Jung-Pyo
    • Journal of Magnetics
    • /
    • v.22 no.2
    • /
    • pp.266-274
    • /
    • 2017
  • In this paper, torques of two motors are compared by Finite Element Analysis (FEA). One has a symmetric rotor structure and the other has an asymmetric rotor structure. The comparison shows that the asymmetric rotor structured motor has reduced torque ripple compared to the symmetric. The torque of the compared motor models was analyzed by separating into magnetic torque and reluctance torque. Through the analysis of torque component separated, it is shown that the magnetic torque and the reluctance torque compensate each other in the motor with the asymmetric structure rotor. Here "compensate" means decrementing the effect of one or more harmonics. It is shown how this compensation appears between the magnetic torque and the reluctance torque by looking into back electro motive force (emf) and the relative permeability distribution of rotor core.

Dynamic Hysteresis Model Based on Fuzzy Clustering Approach

  • Mourad, Mordjaoui;Bouzid, Boudjema
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.6
    • /
    • pp.884-890
    • /
    • 2012
  • Hysteretic behavior model of soft magnetic material usually used in electrical machines and electronic devices is necessary for numerical solution of Maxwell equation. In this study, a new dynamic hysteresis model is presented, based on the nonlinear dynamic system identification from measured data capabilities of fuzzy clustering algorithm. The developed model is based on a Gustafson-Kessel (GK) fuzzy approach used on a normalized gathered data from measured dynamic cycles on a C core transformer made of 0.33mm laminations of cold rolled SiFe. The number of fuzzy rules is optimized by some cluster validity measures like 'partition coefficient' and 'classification entropy'. The clustering results from the GK approach show that it is not only very accurate but also provides its effectiveness and potential for dynamic magnetic hysteresis modeling.

Practical Calculation of Iron Loss for Cylindrical Linear Machine

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1901-1907
    • /
    • 2018
  • This paper is a study for accurate iron loss calculation of a cylindrical linear machine for free piston engine. This study presents that it is possible to accurately predict power loss in ferromagnetic laminations under magnetic flux by specially considering the dependence of hysteresis, classical, and excess loss components on the magnetic induction derivative. Significant iron loss in the armature core will not only compromise the machine efficiency, but may also result in excessive heating, which could lead to irreversible deterioration in the machine performance. Thus, correct prediction of power losses under a distorted flux waveform is therefore an important prerequisite to machine design, particularly when dealing with large apparatus where stringent efficiency standards are required. Finally, it will be discussed about the iron loss in various materials of cylindrical linear electric machine by geometric and electrical parameters. It will give elaborate information about the perfect design and design rules of cylindrical linear machine and in parallel tools for the calculation, simulation and design will be available.