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Abstract – Hysteretic behavior model of soft magnetic material usually used in electrical machines 
and electronic devices is necessary for numerical solution of Maxwell equation. In this study, a new 
dynamic hysteresis model is presented, based on the nonlinear dynamic system identification from 
measured data capabilities of fuzzy clustering algorithm. The developed model is based on a 
Gustafson-Kessel (GK) fuzzy approach used on a normalized gathered data from measured dynamic 
cycles on a C core transformer made of 0.33mm laminations of cold rolled SiFe. The number of fuzzy 
rules is optimized by some cluster validity measures like ‘partition coefficient’ and ’classification 
entropy’. The clustering results from the GK approach show that it is not only very accurate but also 
provides its effectiveness and potential for dynamic magnetic hysteresis modeling. 
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1. Introduction 
 

The accuracy and dynamic performance of rotational 
electrical machines, magnetic actuators and transformers 
used in power plants and electronic devices are directly 
linked to the nonlinearity of the magnetic material used in 
their construction. Proper analysis of systems with 
hysteresis requires a model of this phenomenon. Recently, 
some papers have presented a variety of models for the 
representation of hysteresis loops [1-5] in theses papers the 
authors have introduced different linearization methods and 
mathematical functions that allow desired BH relationships 
to be predicted from observed loops. But these models 
cannot represent the nonlinear hysteresis characteristics 
with high precision. The subject of soft computing 
especially neural network, fuzzy logic and neuro-Fuzzy has 
received much attention in the field of function 
approximation. However, several papers have presented a 
diversity of models for the prediction of magnetic 
hysteresis especially by applying neural network trained by 
back propagation algorithm. It has the advantage of easy 
identification, and the resulting model can approximate the 
measured object well as a continuous function [6-12]. In, 
this paper we introduce a mapping model based on fuzzy 
clustering approach to characterize dynamic magnetic 
hysteresis of soft material vastly used in electrical devices. 
Four hysteresis loops and 101 data points in each loop are 
used as the input and desired output for learning and 
identification of fuzzy model based on Gustafson Kessel 

clustering Algorithm. These hysteresis loops are enough for 
the depiction of the highly nonlinear relationship between 
the magnetic induction B and the magnetic field H. 

 
 
 

2. Fuzzy Clustering Analysis 

 
The objective of cluster analysis is the partitioning of 

data into subsets based on common similarities, from a 
large data set to produce a concise representation of a 
system’s behavior. Clustering can be considered as the 
most important unsupervised learning method and do not 
rely on assumptions common to statistical classification 
methods. It can be used in nonlinear system modeling, 
identification and other scientific fields. A cluster can be 
defined as a collection of objects which are similar 
between them and dissimilar to the objects belonging to 
other clusters. Clustering algorithms are applied to data 
that could be quantitative, qualitative or a mixture of both. 
Our attention here will be focused on clustering of 
quantitative data which consist on physical process 
observations. Clustering algorithms may use an objective 
function to measure the desirability of partitions. Nonlinear 
optimization algorithms are used to search for local optima 
of the objective function. In fuzzy clustering methods can 
see as a generalization of hard clustering. A fuzzy partition 
of data set Z can be represented by a cxN matrix U =[µi,k] 
called fuzzy partition matrix, where µi,k denotes the degree 
of membership that the kth observation belongs to the cth 
cluster and the ith row of U contains values of membership 
function of the ith fuzzy subsets of Z. 
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2.1 Fuzzy c-means technique 

 
A large family of fuzzy clustering algorithms is based on 

minimization of the fuzzy c-means objective function 
formulated as: 
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Where V is a matrix of cluster centers, which have to be 
determined, and the squared inner-product distance norm is 
done by the following equation:  
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It is defined by matrix A and [ ]1,m∈ ∞  is a weighting 

exponent which determines the fuzziness of the resulting 
clusters. 

 
2.2 Gustafson-Kessel clustering approach (GK) 

 
The proposed approach by Gustafson and Kessel [19] is 

an FCM extension by employing an adaptive distance 
norm taking into account the accurate form of each cluster. 
It allows the detection of the hyper ellipsoids clusters 
adapted to the geometry of the observations. However, 
each cluster has its own norm-inducing matrix Ai, which 
yields the following inner-product norm: 
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In this way, quasi-linear behaviors of the existing 

operating regimes are detected quite correctly. Improved 
covariance estimation for Gustafson-Kessel algorithm has 
been introduced in [20]. The objective function of GK 
algorithm is described by: 
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where ,c N c NU R V R× ×∈ ∈  and n nA R ×∈  it is defined 
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Fi is the fuzzy covariance matrix of i-th cluster defined 
by the following expression: 
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The structure of the fuzzy covariance matrix n n

i
F R ×∈  

provides information on the form and orientation of the 
hyperellipsoïds clusters. in fact, the square root of each one 
of its eigenvalues λi, j= 1… n, correspond to the lengths of 
the axes in the hyperspace. The directions of the axes are 
given by the eigen vectors j

φ . The ik
µ  cœfficients of fuzzy 

covariance matrix is:  
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The clusters centers i

ν  are calculated as follows: 
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The flowchart of Gustafson-Kessel algorithm can be 

summarised as indicated in Fig. 1: 
1. Given the data set 
2. Choose the number of cluster 
3. Select the weithning exponent and the termination 

criterion 
4. Initialize the partition matrix randomly 
5. Repeat for t=1,2,… 
6. Compute the clusters centers 
7. Compute the fuzzy covariance matrix 
8. Compute the distance 
9. Update the partition matrix 
10. Stop if the termination criterion is satisfied 
 

2. Dynamic Hysteresis Modeling Process  

 
The GK algorithm is applied to a normalized gathered 

data of dynamic magnetic hysteresis cycles of a C core 
transformer made of 0.33mm laminations of cold rolled 
SiFe at 50 Hz (Fig. 1) comes from a research report [12].  
Fig. 3 shows the clustering results for four clusters by the 
major hysteresis cycle data set, the ‘o’ markers are the 
cluster centers. From these results it can be seen that GK 
algorithm can adapt the distance norm to the underlying 
distribution of the data. The ellipsoidal shape of the 
clusters can be determined from the eigenstructure of the 
resulting covariance matrices Fi. The GK algorithm is not 
so sensitive to the normalization of data and results can be 
significantly changed by different initial state. Simulation 
result of major hysteresis cycle for four clusters is 
illustrated in Fig. 4. It‘s clearly that the measured cycle is 
closely reproduced by GK approach.  
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Fig. 1. Flowchart of the Gustafson-Kessel approach 
 
 
 

 

Fig. 2. Measured hysteresis loops 
 

 

Fig. 3. The results of Gustafson-Kessel algorithm by the 
major hysteresis cycle data set. 

 

Fig. 4. Major hysteresis cycle identification for four 
clusters. 
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3. Dynamic Hysteresis Approximation and 

Evaluation Process 

 
The goal is to predict dynamic magnetic hysteresis on 

the basis of four given cycles. The data set employed is 
1x101 pairs for training and 3x101 pairs for checking. The 
performance model is measured by the root mean squared 
error (RMSE), variance accounting for (VAF) introduced 
by Babuska et Al [14] and a calculating time (Tcal) given 
by:  
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The best value of VAF is 100% when the two signals are 

equal, if different; the VAF is lower whereas Tcal is the 
time machine required for fuzzy model construction from 
data. 

Results of model identification quality (VAF, RMSE and 
computing time) from various stages of identifications 
using toolbox proposed in [17, 18] in a micro-computer 
Pentium 4, 2.06 GHz with 256 MB of RAM and an 
operating system Windows 2000 Professional is shown in 
Table 1. The best model with respect to the RMSE and 
VAF criterion is for two clusters (in red, Table 1) whereas 
for the Tcal is for three clusters (in magenta, Table 1). 

 

Table 1. Model performance of dynamic magnetic 
hysteresis by GK approach 

Parameters  c=2 c=3 c=4 

VAF 99.9978 99.9975 99.7737 

RMSE 0.0034 0.0059 0.0355 

Tcal (s) 0.172 0.1410 0.1570 

 

The Fuzzy antecedent and consequent rules which 
describe the behaviour of the optimal local models and the 
centres of clusters are illustrated in Table 2 and Table 3 
respectively. 

 

Table 2. Fuzzy model rules obtained with GK approach for 
two clusters 

Clusters Antecedent rules Consequent rules 

1 
if y(k-1) is A11 and y(k-2) is  
A12 and u(k) is A13 and u(k-i)  
is A14 

y(k)=2. 

y(k-1)-1.01. 

y(k-2)+2.26.10-2. 
u(k)-2.45.10-2. 

u(k-1)+1.98.10-5 

2 
if y(k-1) is A21 and y(k-2) is  
A22 and u(k) is A23 and u(k-i)  
is A24 

y(k)=1.92.  
y(k-1)-9.12. 

y(k-2)+ 6.7.10-2. 
u(k)-7.91.10-2. 

u(k-1)+6.28.10-5 

Table 3. Clusters centers of GK hysteresis model 

( )1−kyv  ( )2−kyv  ( )kuv  ( )1−kuv  
5.49.10-3 5.89.10-3 -1.76.10-3 -1.28.10-3 
4.52.10-2 4.44.10-2 5.10-2 5.10-3 

 
4. Cluster Validity of Dynamic Magnetic  

Hysteresis Fuzzy Model 

 
In the course of every partitioning problem the number 

of clusters must be given by the user before the calculation, 
but it is rarely known a priori, in this case it must be 
searched also with using validity indices [15, 16]. Different 
scalar validity measures have been proposed in the 
literature, none of them is perfect by itself thus it is suitable 
to use some indices simultaneously. 

 
4.1 Partition coefficient (PC) 
 
Measures the ammount of overlapping between clusters. 

It use only the membership values of the fuzzy partition of 
data defined by Bezdek [13] as follows:  
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where ik

µ  is the membership of data point i in cluster k. 
The main drawback of this indice is the lack of direct 
connection to the data itself. The optimal number of 
clusters can be found by the maximum value.  

 

4.2 Classification entropy (CE)  
 
Measures only the fuzzyness of the cluster partition, 

which is similar to the Partition Coefficient. 
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4.3 Partition index (SC):  

 

Express the ratio of the sum of compactness and 
separation of the clusters. Each cluster is measured with 
the cluster validation method. It is normalized by dividing 
it by the fuzzy cardinality of the cluster. To receive the 
partition index, the sum of the value for each individual 
cluster is used.  
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SC is useful when comparing different partitions with the 
same number of clusters. A lower value of SC means a 
better partition. 
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4.4 Separation index (S)  
 
In contrast with the partition index (SC), the separation 

index uses a minimum-distance separation for partition 
validity. 
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4.4 Xie and beni’s index (XB)  
 

Express the ratio of the total variation within the clusters 
and the separation of the clusters. The optimal number of 
clusters should minimize the value of the index. 

 
 

 

Fig. 5. Value of PC and CE coefficient 
 
 

 
Fig. 6. Value of SC, S and XB indices 
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It is essential to optimize the number of fuzzy clusters. 

This can be accomplished by validation analysis using 
fuzzy cluster validity indices. In this paper, P, C, CE, SC, 
XB and the separation index are adopted. Fig. 5 and Fig. 6 
shows the results of clusters validity indices. All the 
clusters validity indices with respect to RMSE and VAF 
shows that two clusters can be considered as the optimal 
number of rules but three clusters is the optimal number of 
rules with respect to Tcal (Table 1).  

 

Table 4. Training and checking error 

 RMSE VAF 
Cycle 1 0.0081 99.987 
Cycle 2 0.0224 99.8679 
Cycle 3 0.0224 99.7441 
Cycle 4 0.0085 99.8937 

 

 

Fig. 7. Memberships functions of fuzzy model 

 

Fig. 8. Dynamic Hysteresis cycle measured and simulated 
with GK algorithm 
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The GK clustering algorithm is used to construct fuzzy 
model with two fuzzy rules. Four cycles are considered, the 
major hysteresis cycle is used for training and the other 
minor cycles for testing. Results of the training and 
validation error of the obtained fuzzy model are shown in 
Table 4. The corresponding fuzzy membership’s functions 
are illustrated in Fig. 7. Fig. 8 illustrates the comparison of 
fuzzy model output and measured outputs. 

 

 
5. Conclusion 

 
This paper studies the fuzzy modeling of soft magnetic 

behavior. An original dynamic magnetic hysteresis model 
is proposed based on Gustafson-Kessel approach. Several 
indices are used to optimize the fuzzy model rules and 
improve its precision. Results show that in both training 
and testing, the model produced reliable outputs with 
relatively small errors. However, the developed model 
shows that the clustering technique is suitable for 
identification of highly soft magnetic materials. 
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