DOI QR코드

DOI QR Code

Mechanochemistry: from Mechanical Degradation to Novel Materials Properties

  • Sepelak, V. (Institute of Nanotechnology, Karlsruhe Institute of Technology) ;
  • Becker, K.D. (Institute of Physical and Theoretical Chemistry, Technische Universitat Braunschweig)
  • Received : 2011.08.30
  • Accepted : 2011.10.07
  • Published : 2012.01.31

Abstract

High-energy mechanical action applied to solid leads to destruction and diminution to the nanosize level. But on the other hand, it can induce structural changes at the nanoscale and at the atomic level which can result in novel materials properties. In this contribution, case studies will be presented concerned with the tailoring of magnetic properties of mechanically treated nanomaterials. Emphasis is placed on materials that have been synthesized by mechanochemical means and on an improved understanding of their nanomagnetism in general. The associated local structural changes of the iron containing magnetic materials discussed in the examples have been studied most suitably by $^{57}Fe$ Mossbauer nuclear probe spectroscopy whose results are supplemented by measurements of the magnetic properties of the mechanosynthesized nanomaterials.

Keywords

References

  1. M. C. Lea, "Disruption of the Silver Haloid Molecule by Mechanical Force," Phil. Mag., 34 [1] 46-50 (1892). https://doi.org/10.1080/14786449208620163
  2. L. Takacs, "M. Carey Lea, the First Mechanochemist," J. Mat. Sci., 39 [16-17] 4987-93 (2004). https://doi.org/10.1023/B:JMSC.0000039175.73904.93
  3. W. Ostwald, Handbuch der Allgemeinen Chemie (in German), Vol. 1, p. 70, Akademische Verlagsgesellschaft, Leipzig, 1919.
  4. G. Heinicke, Tribochemistry, p.15, Akademie Verlag, Berlin, 1984.
  5. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8.
  6. S. Kipp, V. Sepelak, and K.-D. Becker, "Mechanochemie: Chemie mit dem Hammer (in German)," Chemie Unserer Zeit, 39 [6] 384-92 (2005). https://doi.org/10.1002/ciuz.200500355
  7. M. K. Beyer and H. Clausen-Schaumann, "Mechanochemistry: The Mechanical Activation of Covalent Bonds," Chem. Rev., 105 [8] 2921-48 (2005). https://doi.org/10.1021/cr030697h
  8. V. V. Boldyrev, "Mechanochemistry and Mechanical Activation of Solids," Russ. Chem. Rev., 75 [3] 177-89 (2006). https://doi.org/10.1070/RC2006v075n03ABEH001205
  9. F. Delogu and G. Mulas, Experimental and Theoretical Studies in Modern Mechanochemistry, Transworld Research Network, Kerala, 2010.
  10. V. Sepelak, U. Steinike, D. C. Uecker, S. Wissmann, and K. D. Becker, "Structural Disorder in Mechanosynthesized Zinc Ferrite," J. Solid State Chem., 135 [1] 52-8 (1998). https://doi.org/10.1006/jssc.1997.7589
  11. N. Lyakhov, T. Grigorieva, A. Barinova, S. Lomayeva, E. Yelsukov, and A. Ulyanov, "Nanosized Mechanocomposites and Solid Solution in Immiscible Metal Systems," J. Mater. Sci., 39 [16-17] 5421-23 (2004). https://doi.org/10.1023/B:JMSC.0000039258.56606.55
  12. S. Yin, H. Yamaki, Q. Zhang, M. Komatsu, J. Wang, Q. Tang, F. Saito, and T. Sato, "Mechanochemical Synthesis of Nitrogendoped Titania and its Visible Light Induced $NO_x$ Destruction Ability," Solid State Ionics, 172 [1-5] 205-9 (2004). https://doi.org/10.1016/j.ssi.2004.05.018
  13. M. L. Ovecoglu and B. Ozkal, "Mechanochemical Synthesis of WC Powders by Mechanical Alloying," Key Eng. Mater., 264-268 [1] 89-92 (2004). https://doi.org/10.4028/www.scientific.net/KEM.264-268.89
  14. E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis, Kluwer Academic Pub., Boston, 2001.
  15. P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin, 2008.
  16. V. Sepelak, I. Bergmann, S. Indris, A. Feldhoff, H. Hahn, K. D. Becker, C. P. Grey, and P. Heitjans, "High-resolution $^{27}Al$ MAS NMR Spectroscopic Studies of the Response of Spinel Aluminates to Mechanical Action," J. Mat. Chem., 21 [23] 8332-37 (2011). https://doi.org/10.1039/c0jm03721d
  17. V. Sepelak, K. D. Becker, I. Bergmann, S. Suzuki, S. Indris, A. Feldhoff, P. Heitjans, and C. P. Grey, "A One-step Mechanochemical Route to Core-Shell $Ca_2SnO_4$ Nanoparticles Followed by $^{119}Sn$ MAS NMR and $^{119}Sn$ Mossbauer Spectroscopy," Chem. Mater., 21 [12] 2518-24 (2009). https://doi.org/10.1021/cm900590d
  18. C. Deidda, F. Delogu, and G. Cocco, "In Situ Characterisation of Mechanically-induced Self-propagating Reactions," J. Mater. Sci., 39 [16-17] 5315-18 (2004). https://doi.org/10.1023/B:JMSC.0000039236.48464.8f
  19. G. Manai, F. Delogu, L. Schiffini, and G. Cocco, "Mechanically Induced Self-propagating Combustions: Experimental Findings and Numerical Simulation Results," J. Mater. Sci., 39 [16-17] 5319-24 (2004). https://doi.org/10.1023/B:JMSC.0000039237.93724.e9
  20. http://www.fritsch.de/.
  21. C. Zhou, T. C. Schulthess, and D. P. Landau, "Monte Carlo Simulations of $NiFe_2O_4$ Nanoparticles," J. Appl. Phys., 99 [8] 08H9061-3 (2006).
  22. A. Goldman, Modern Ferrite Technology, Springer, New York, 2006.
  23. T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, "Size-dependent Magnetic Properties of Single-crystalline Multiferroic $BiFeO_3$ Nanoparticles," Nano Lett., 7 [3] 766-72 (2007). https://doi.org/10.1021/nl063039w
  24. H. Schmalzried, "Rontgenographische Untersuchungen der Kationenverteilung in Spinellphasen (in German)," Z. Physik. Chem. NF, 28 [3/4] 203-19 (1961). https://doi.org/10.1524/zpch.1961.28.3_4.203
  25. H. St. O'Neill and A. Navrotsky, "Simple Spinels: Crystallographic Parameters, Cation Radii, Lattice Energies, and Cation Distribution," Am. Mineral., 68 [1-2] 181-94 (1983)
  26. K.D. Becker and F. Rau, "High Temperature Ligand Field Spectra in Spinels: Cation Disorder and Cation Kinetics in $NiAl_2O_4$," Ber. Bunsenges. Phys. Chem., 91 [11] 1279-82 (1987) https://doi.org/10.1002/bbpc.19870911139
  27. S. A. T. Redfern, R. J. Harrison, H. St. C. O'Neill, and D. R. R. Wood, "Thermodynamics and Kinetics of Cation Ordering in $MgAl_2O_4$ Spinel up to $1600^{\circ}c$ from in Situ Neutron Diffraction," Am. Miner., 84 [3] 299-310 (1999).
  28. Z. Wong, P. Lazor, S. K. Saxena, and G. Artioli, "High-Pressure Raman Spectroscopic Study of Spinel ($ZnCr_2O_4$)," J. Solid State Chem., 165 [1] 165-70 (2002). https://doi.org/10.1006/jssc.2002.9527
  29. V. Sepelak, S. Indris, P. Heitjans, and K. D. Becker, "Direct Determination of the Cation Disorder in Nanoscale Spinels by NMR, XPS, and Mossbauer Spectroscopy," J. Alloy. Compd., 434-435 [SPEC.ISS] 776-78 (2007). https://doi.org/10.1016/j.jallcom.2006.08.173
  30. V. Sepelak and K. D. Becker, "Comparison of the Cation Inversion Parameter of the Nanoscale Milled Spinel Ferrites with that of the Quenched Bulk Materials," Mater. Sci. Eng. A, 375-377 [1-2] 861-64 (2004). https://doi.org/10.1016/j.msea.2003.10.178
  31. V. Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, I. Bergmann, and K. D. Becker, "Nonequilibrium Cation Distribution, Canted spin Arrangement, and Enhanced Magnetization in Nanosized $MgFe_2O_4$ Prepared by a One-step Mechanochemical Route," Chem. Mater., 18 [13] 3057-67 (2006). https://doi.org/10.1021/cm0514894
  32. R. E. Vandenberghe and E. De Grave, pp. 115-187 in Mossbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3. Ed. By G. J. Long, F. Grandjean, Plenum Press, New York, 1989.
  33. Joint Committee on Powder Diffraction Standards (JCPDS) Powder Diffraction File, International Centre for Diffraction Data, Newton Square, PA, 2004.
  34. M. Muroi, R. Street, P. G. McCormick, and J. Amighian, "Magnetic Properties of Ultrafine $MnFe_2O_4$ Powders Prepared by Mechanochemical Processing," J. Phys. Rev. B, 63 [18] 1844141-7 (2001).
  35. K. Haneda and A. H. Morrish, "Noncollinear Magnetic Structure of $CoFe_2O_4$ Small Particles," J. Appl. Phys., 63 [8] 4258-60 (1988). https://doi.org/10.1063/1.340197
  36. V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst, and K. D. Becker, "Evolution of Structure and Magnetic Properties with Annealing Temperature in Nanoscale High-energy-milled Nickel Ferrite," J. Magn. Magn. Mater., 257 [2-3] 377-86 (2003). https://doi.org/10.1016/S0304-8853(02)01279-9
  37. V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, S. J. Campbell, and K. D. Becker, "Nanocrystalline Nickel Ferrite, $NiFe_2O_4$: Mechanosynthesis, Nonequilibrium Cation Distribution, Canted spin Arrangement, and Magnetic Behaviour," J. Phys. Chem. C, 111 [13] 5026-33 (2007). https://doi.org/10.1021/jp067620s
  38. K. L. Da Silva, D. Menzel, A. Feldhoff, C. Kubel, M. Bruns, A. Paesano, Jr., A. Duvel, M. Wilkening, M. Ghafari, H. Hahn, F. J. Litterst, P. Heitjans, K. D. Becker, and V. Sepelak, "Mechanosynthesized $BiFeO_3$ Nanoparticles with Highly Reactive Surface and Enhanced Magnetization," J. Phys. Chem. C, 115 [15] 7209-17 (2011). https://doi.org/10.1021/jp110128t
  39. J. M. Moreau, C. Michel, R. Gerson, and W. J. James, "Ferroelectric $BiFeO_3$ X-ray and Neutron Diffraction Study," J. Phys. Chem. Solids, 32 [6] 1315-20 (1971). https://doi.org/10.1016/S0022-3697(71)80189-0
  40. L. Neel, "Superparamagnetisme Des Grains Tres Fins Antiferromagnetiques (in French)," Compt. Rend. Acad. Sci., 252 [26] 4075-79 (1961).
  41. J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, "Exchange Bias in Nanostructures," Phys. Rep., 422 [3] 65-117 (2005). https://doi.org/10.1016/j.physrep.2005.08.004
  42. R. N. Bhowmik, R. Ranganathan, R. Nagarajan, B. Ghosh, and S. Kumar, "Role of Strain-induced Anisotropy on Magnetic Enhancement in Mechanically Alloyed $Co_{0.2}Zn_{0.8}Fe_2O_4$ Nanoparticle," Phys. Rev. B, 72 [9] 1-10 (2005).
  43. V. Sepelak, I. Bergmann, D. Menzel, A. Feldhoff, P. Heitjans, F. J. Litterst, and K. D. Becker, "Magnetization Enhancement in Nanosized $MgFe_2O_4$ Prepared by Mechanosynthesis," J. Magn. Magn. Mater., 316 [2] e764-67 (2007) . https://doi.org/10.1016/j.jmmm.2007.03.087

Cited by

  1. Mechanochemical reactions and syntheses of oxides vol.42, pp.18, 2013, https://doi.org/10.1039/c2cs35462d
  2. : From the Fluorite to the Tysonite Structure vol.118, pp.13, 2014, https://doi.org/10.1021/jp410018t
  3. Mechanochemical surface functionalisation of superparamagnetic microparticles with in situ formed crystalline metal-complexes: a fast novel core–shell particle formation method vol.51, pp.41, 2015, https://doi.org/10.1039/C5CC01961C
  4. Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review) vol.52, pp.20, 2017, https://doi.org/10.1007/s10853-017-1174-7
  5. Role of inhomogeneous cation distribution in magnetic enhancement of nanosized Ni0.35Zn0.65Fe2O4: A structural, magnetic, and hyperfine study vol.114, pp.9, 2012, https://doi.org/10.1063/1.4819809
  6. Mechanochemistry of Solids: New Prospects for Extractive Metallurgy, Materials Science and Medicine vol.126, pp.4, 2012, https://doi.org/10.12693/aphyspola.126.879
  7. Influence of mechanochemical treatment on thermal and structural properties of silica-collagen and hydroxyapatite-collagen composites vol.25, pp.3, 2012, https://doi.org/10.1007/s10450-019-00051-3
  8. Tetrahedrites synthesized via scalable mechanochemical process and spark plasma sintering vol.40, pp.5, 2012, https://doi.org/10.1016/j.jeurceramsoc.2020.01.023
  9. Thermoelectric Cu-S-Based Materials Synthesized via a Scalable Mechanochemical Process vol.9, pp.5, 2012, https://doi.org/10.1021/acssuschemeng.0c05555
  10. Bismuth Doping in Nanostructured Tetrahedrite: Scalable Synthesis and Thermoelectric Performance vol.11, pp.6, 2012, https://doi.org/10.3390/nano11061386
  11. Low-Temperature Synthesis and Catalytic Activity of Cobalt Ferrite in Nitrous Oxide (N2O) Decomposition Reaction vol.11, pp.8, 2012, https://doi.org/10.3390/catal11080889