References
- M. C. Lea, "Disruption of the Silver Haloid Molecule by Mechanical Force," Phil. Mag., 34 [1] 46-50 (1892). https://doi.org/10.1080/14786449208620163
- L. Takacs, "M. Carey Lea, the First Mechanochemist," J. Mat. Sci., 39 [16-17] 4987-93 (2004). https://doi.org/10.1023/B:JMSC.0000039175.73904.93
- W. Ostwald, Handbuch der Allgemeinen Chemie (in German), Vol. 1, p. 70, Akademische Verlagsgesellschaft, Leipzig, 1919.
- G. Heinicke, Tribochemistry, p.15, Akademie Verlag, Berlin, 1984.
- IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8.
- S. Kipp, V. Sepelak, and K.-D. Becker, "Mechanochemie: Chemie mit dem Hammer (in German)," Chemie Unserer Zeit, 39 [6] 384-92 (2005). https://doi.org/10.1002/ciuz.200500355
- M. K. Beyer and H. Clausen-Schaumann, "Mechanochemistry: The Mechanical Activation of Covalent Bonds," Chem. Rev., 105 [8] 2921-48 (2005). https://doi.org/10.1021/cr030697h
- V. V. Boldyrev, "Mechanochemistry and Mechanical Activation of Solids," Russ. Chem. Rev., 75 [3] 177-89 (2006). https://doi.org/10.1070/RC2006v075n03ABEH001205
- F. Delogu and G. Mulas, Experimental and Theoretical Studies in Modern Mechanochemistry, Transworld Research Network, Kerala, 2010.
- V. Sepelak, U. Steinike, D. C. Uecker, S. Wissmann, and K. D. Becker, "Structural Disorder in Mechanosynthesized Zinc Ferrite," J. Solid State Chem., 135 [1] 52-8 (1998). https://doi.org/10.1006/jssc.1997.7589
- N. Lyakhov, T. Grigorieva, A. Barinova, S. Lomayeva, E. Yelsukov, and A. Ulyanov, "Nanosized Mechanocomposites and Solid Solution in Immiscible Metal Systems," J. Mater. Sci., 39 [16-17] 5421-23 (2004). https://doi.org/10.1023/B:JMSC.0000039258.56606.55
-
S. Yin, H. Yamaki, Q. Zhang, M. Komatsu, J. Wang, Q. Tang, F. Saito, and T. Sato, "Mechanochemical Synthesis of Nitrogendoped Titania and its Visible Light Induced
$NO_x$ Destruction Ability," Solid State Ionics, 172 [1-5] 205-9 (2004). https://doi.org/10.1016/j.ssi.2004.05.018 - M. L. Ovecoglu and B. Ozkal, "Mechanochemical Synthesis of WC Powders by Mechanical Alloying," Key Eng. Mater., 264-268 [1] 89-92 (2004). https://doi.org/10.4028/www.scientific.net/KEM.264-268.89
- E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis, Kluwer Academic Pub., Boston, 2001.
- P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin, 2008.
-
V. Sepelak, I. Bergmann, S. Indris, A. Feldhoff, H. Hahn, K. D. Becker, C. P. Grey, and P. Heitjans, "High-resolution
$^{27}Al$ MAS NMR Spectroscopic Studies of the Response of Spinel Aluminates to Mechanical Action," J. Mat. Chem., 21 [23] 8332-37 (2011). https://doi.org/10.1039/c0jm03721d -
V. Sepelak, K. D. Becker, I. Bergmann, S. Suzuki, S. Indris, A. Feldhoff, P. Heitjans, and C. P. Grey, "A One-step Mechanochemical Route to Core-Shell
$Ca_2SnO_4$ Nanoparticles Followed by$^{119}Sn$ MAS NMR and$^{119}Sn$ Mossbauer Spectroscopy," Chem. Mater., 21 [12] 2518-24 (2009). https://doi.org/10.1021/cm900590d - C. Deidda, F. Delogu, and G. Cocco, "In Situ Characterisation of Mechanically-induced Self-propagating Reactions," J. Mater. Sci., 39 [16-17] 5315-18 (2004). https://doi.org/10.1023/B:JMSC.0000039236.48464.8f
- G. Manai, F. Delogu, L. Schiffini, and G. Cocco, "Mechanically Induced Self-propagating Combustions: Experimental Findings and Numerical Simulation Results," J. Mater. Sci., 39 [16-17] 5319-24 (2004). https://doi.org/10.1023/B:JMSC.0000039237.93724.e9
- http://www.fritsch.de/.
-
C. Zhou, T. C. Schulthess, and D. P. Landau, "Monte Carlo Simulations of
$NiFe_2O_4$ Nanoparticles," J. Appl. Phys., 99 [8] 08H9061-3 (2006). - A. Goldman, Modern Ferrite Technology, Springer, New York, 2006.
-
T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, "Size-dependent Magnetic Properties of Single-crystalline Multiferroic
$BiFeO_3$ Nanoparticles," Nano Lett., 7 [3] 766-72 (2007). https://doi.org/10.1021/nl063039w - H. Schmalzried, "Rontgenographische Untersuchungen der Kationenverteilung in Spinellphasen (in German)," Z. Physik. Chem. NF, 28 [3/4] 203-19 (1961). https://doi.org/10.1524/zpch.1961.28.3_4.203
- H. St. O'Neill and A. Navrotsky, "Simple Spinels: Crystallographic Parameters, Cation Radii, Lattice Energies, and Cation Distribution," Am. Mineral., 68 [1-2] 181-94 (1983)
-
K.D. Becker and F. Rau, "High Temperature Ligand Field Spectra in Spinels: Cation Disorder and Cation Kinetics in
$NiAl_2O_4$ ," Ber. Bunsenges. Phys. Chem., 91 [11] 1279-82 (1987) https://doi.org/10.1002/bbpc.19870911139 -
S. A. T. Redfern, R. J. Harrison, H. St. C. O'Neill, and D. R. R. Wood, "Thermodynamics and Kinetics of Cation Ordering in
$MgAl_2O_4$ Spinel up to$1600^{\circ}c$ from in Situ Neutron Diffraction," Am. Miner., 84 [3] 299-310 (1999). -
Z. Wong, P. Lazor, S. K. Saxena, and G. Artioli, "High-Pressure Raman Spectroscopic Study of Spinel (
$ZnCr_2O_4$ )," J. Solid State Chem., 165 [1] 165-70 (2002). https://doi.org/10.1006/jssc.2002.9527 - V. Sepelak, S. Indris, P. Heitjans, and K. D. Becker, "Direct Determination of the Cation Disorder in Nanoscale Spinels by NMR, XPS, and Mossbauer Spectroscopy," J. Alloy. Compd., 434-435 [SPEC.ISS] 776-78 (2007). https://doi.org/10.1016/j.jallcom.2006.08.173
- V. Sepelak and K. D. Becker, "Comparison of the Cation Inversion Parameter of the Nanoscale Milled Spinel Ferrites with that of the Quenched Bulk Materials," Mater. Sci. Eng. A, 375-377 [1-2] 861-64 (2004). https://doi.org/10.1016/j.msea.2003.10.178
-
V. Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, I. Bergmann, and K. D. Becker, "Nonequilibrium Cation Distribution, Canted spin Arrangement, and Enhanced Magnetization in Nanosized
$MgFe_2O_4$ Prepared by a One-step Mechanochemical Route," Chem. Mater., 18 [13] 3057-67 (2006). https://doi.org/10.1021/cm0514894 - R. E. Vandenberghe and E. De Grave, pp. 115-187 in Mossbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3. Ed. By G. J. Long, F. Grandjean, Plenum Press, New York, 1989.
- Joint Committee on Powder Diffraction Standards (JCPDS) Powder Diffraction File, International Centre for Diffraction Data, Newton Square, PA, 2004.
-
M. Muroi, R. Street, P. G. McCormick, and J. Amighian, "Magnetic Properties of Ultrafine
$MnFe_2O_4$ Powders Prepared by Mechanochemical Processing," J. Phys. Rev. B, 63 [18] 1844141-7 (2001). -
K. Haneda and A. H. Morrish, "Noncollinear Magnetic Structure of
$CoFe_2O_4$ Small Particles," J. Appl. Phys., 63 [8] 4258-60 (1988). https://doi.org/10.1063/1.340197 - V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst, and K. D. Becker, "Evolution of Structure and Magnetic Properties with Annealing Temperature in Nanoscale High-energy-milled Nickel Ferrite," J. Magn. Magn. Mater., 257 [2-3] 377-86 (2003). https://doi.org/10.1016/S0304-8853(02)01279-9
-
V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, S. J. Campbell, and K. D. Becker, "Nanocrystalline Nickel Ferrite,
$NiFe_2O_4$ : Mechanosynthesis, Nonequilibrium Cation Distribution, Canted spin Arrangement, and Magnetic Behaviour," J. Phys. Chem. C, 111 [13] 5026-33 (2007). https://doi.org/10.1021/jp067620s -
K. L. Da Silva, D. Menzel, A. Feldhoff, C. Kubel, M. Bruns, A. Paesano, Jr., A. Duvel, M. Wilkening, M. Ghafari, H. Hahn, F. J. Litterst, P. Heitjans, K. D. Becker, and V. Sepelak, "Mechanosynthesized
$BiFeO_3$ Nanoparticles with Highly Reactive Surface and Enhanced Magnetization," J. Phys. Chem. C, 115 [15] 7209-17 (2011). https://doi.org/10.1021/jp110128t -
J. M. Moreau, C. Michel, R. Gerson, and W. J. James, "Ferroelectric
$BiFeO_3$ X-ray and Neutron Diffraction Study," J. Phys. Chem. Solids, 32 [6] 1315-20 (1971). https://doi.org/10.1016/S0022-3697(71)80189-0 - L. Neel, "Superparamagnetisme Des Grains Tres Fins Antiferromagnetiques (in French)," Compt. Rend. Acad. Sci., 252 [26] 4075-79 (1961).
- J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, "Exchange Bias in Nanostructures," Phys. Rep., 422 [3] 65-117 (2005). https://doi.org/10.1016/j.physrep.2005.08.004
-
R. N. Bhowmik, R. Ranganathan, R. Nagarajan, B. Ghosh, and S. Kumar, "Role of Strain-induced Anisotropy on Magnetic Enhancement in Mechanically Alloyed
$Co_{0.2}Zn_{0.8}Fe_2O_4$ Nanoparticle," Phys. Rev. B, 72 [9] 1-10 (2005). -
V. Sepelak, I. Bergmann, D. Menzel, A. Feldhoff, P. Heitjans, F. J. Litterst, and K. D. Becker, "Magnetization Enhancement in Nanosized
$MgFe_2O_4$ Prepared by Mechanosynthesis," J. Magn. Magn. Mater., 316 [2] e764-67 (2007) . https://doi.org/10.1016/j.jmmm.2007.03.087
Cited by
- Mechanochemical reactions and syntheses of oxides vol.42, pp.18, 2013, https://doi.org/10.1039/c2cs35462d
- : From the Fluorite to the Tysonite Structure vol.118, pp.13, 2014, https://doi.org/10.1021/jp410018t
- Mechanochemical surface functionalisation of superparamagnetic microparticles with in situ formed crystalline metal-complexes: a fast novel core–shell particle formation method vol.51, pp.41, 2015, https://doi.org/10.1039/C5CC01961C
- Chalcogenide mechanochemistry in materials science: insight into synthesis and applications (a review) vol.52, pp.20, 2017, https://doi.org/10.1007/s10853-017-1174-7
- Role of inhomogeneous cation distribution in magnetic enhancement of nanosized Ni0.35Zn0.65Fe2O4: A structural, magnetic, and hyperfine study vol.114, pp.9, 2012, https://doi.org/10.1063/1.4819809
- Mechanochemistry of Solids: New Prospects for Extractive Metallurgy, Materials Science and Medicine vol.126, pp.4, 2012, https://doi.org/10.12693/aphyspola.126.879
- Influence of mechanochemical treatment on thermal and structural properties of silica-collagen and hydroxyapatite-collagen composites vol.25, pp.3, 2012, https://doi.org/10.1007/s10450-019-00051-3
- Tetrahedrites synthesized via scalable mechanochemical process and spark plasma sintering vol.40, pp.5, 2012, https://doi.org/10.1016/j.jeurceramsoc.2020.01.023
- Thermoelectric Cu-S-Based Materials Synthesized via a Scalable Mechanochemical Process vol.9, pp.5, 2012, https://doi.org/10.1021/acssuschemeng.0c05555
- Bismuth Doping in Nanostructured Tetrahedrite: Scalable Synthesis and Thermoelectric Performance vol.11, pp.6, 2012, https://doi.org/10.3390/nano11061386
- Low-Temperature Synthesis and Catalytic Activity of Cobalt Ferrite in Nitrous Oxide (N2O) Decomposition Reaction vol.11, pp.8, 2012, https://doi.org/10.3390/catal11080889