Browse > Article
http://dx.doi.org/10.4191/kcers.2012.49.1.019

Mechanochemistry: from Mechanical Degradation to Novel Materials Properties  

Sepelak, V. (Institute of Nanotechnology, Karlsruhe Institute of Technology)
Becker, K.D. (Institute of Physical and Theoretical Chemistry, Technische Universitat Braunschweig)
Publication Information
Abstract
High-energy mechanical action applied to solid leads to destruction and diminution to the nanosize level. But on the other hand, it can induce structural changes at the nanoscale and at the atomic level which can result in novel materials properties. In this contribution, case studies will be presented concerned with the tailoring of magnetic properties of mechanically treated nanomaterials. Emphasis is placed on materials that have been synthesized by mechanochemical means and on an improved understanding of their nanomagnetism in general. The associated local structural changes of the iron containing magnetic materials discussed in the examples have been studied most suitably by $^{57}Fe$ Mossbauer nuclear probe spectroscopy whose results are supplemented by measurements of the magnetic properties of the mechanosynthesized nanomaterials.
Keywords
Mechanochemistry; Nanomagnetism; Core-shell model; Spinels; Mossbauer spectroscopy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Sepelak, U. Steinike, D. C. Uecker, S. Wissmann, and K. D. Becker, "Structural Disorder in Mechanosynthesized Zinc Ferrite," J. Solid State Chem., 135 [1] 52-8 (1998).   DOI   ScienceOn
2 N. Lyakhov, T. Grigorieva, A. Barinova, S. Lomayeva, E. Yelsukov, and A. Ulyanov, "Nanosized Mechanocomposites and Solid Solution in Immiscible Metal Systems," J. Mater. Sci., 39 [16-17] 5421-23 (2004).   DOI
3 J. Nogues, J. Sort, V. Langlais, V. Skumryev, S. Surinach, J. S. Munoz, and M. D. Baro, "Exchange Bias in Nanostructures," Phys. Rep., 422 [3] 65-117 (2005).   DOI   ScienceOn
4 R. N. Bhowmik, R. Ranganathan, R. Nagarajan, B. Ghosh, and S. Kumar, "Role of Strain-induced Anisotropy on Magnetic Enhancement in Mechanically Alloyed $Co_{0.2}Zn_{0.8}Fe_2O_4$ Nanoparticle," Phys. Rev. B, 72 [9] 1-10 (2005).
5 V. Sepelak, I. Bergmann, D. Menzel, A. Feldhoff, P. Heitjans, F. J. Litterst, and K. D. Becker, "Magnetization Enhancement in Nanosized $MgFe_2O_4$ Prepared by Mechanosynthesis," J. Magn. Magn. Mater., 316 [2] e764-67 (2007) .   DOI   ScienceOn
6 V. Sepelak, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F. J. Litterst, and K. D. Becker, "Evolution of Structure and Magnetic Properties with Annealing Temperature in Nanoscale High-energy-milled Nickel Ferrite," J. Magn. Magn. Mater., 257 [2-3] 377-86 (2003).   DOI   ScienceOn
7 R. E. Vandenberghe and E. De Grave, pp. 115-187 in Mossbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 3. Ed. By G. J. Long, F. Grandjean, Plenum Press, New York, 1989.
8 Joint Committee on Powder Diffraction Standards (JCPDS) Powder Diffraction File, International Centre for Diffraction Data, Newton Square, PA, 2004.
9 M. Muroi, R. Street, P. G. McCormick, and J. Amighian, "Magnetic Properties of Ultrafine $MnFe_2O_4$ Powders Prepared by Mechanochemical Processing," J. Phys. Rev. B, 63 [18] 1844141-7 (2001).
10 K. Haneda and A. H. Morrish, "Noncollinear Magnetic Structure of $CoFe_2O_4$ Small Particles," J. Appl. Phys., 63 [8] 4258-60 (1988).   DOI
11 V. Sepelak, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, S. J. Campbell, and K. D. Becker, "Nanocrystalline Nickel Ferrite, $NiFe_2O_4$: Mechanosynthesis, Nonequilibrium Cation Distribution, Canted spin Arrangement, and Magnetic Behaviour," J. Phys. Chem. C, 111 [13] 5026-33 (2007).   DOI   ScienceOn
12 K. L. Da Silva, D. Menzel, A. Feldhoff, C. Kubel, M. Bruns, A. Paesano, Jr., A. Duvel, M. Wilkening, M. Ghafari, H. Hahn, F. J. Litterst, P. Heitjans, K. D. Becker, and V. Sepelak, "Mechanosynthesized $BiFeO_3$ Nanoparticles with Highly Reactive Surface and Enhanced Magnetization," J. Phys. Chem. C, 115 [15] 7209-17 (2011).   DOI   ScienceOn
13 J. M. Moreau, C. Michel, R. Gerson, and W. J. James, "Ferroelectric $BiFeO_3$ X-ray and Neutron Diffraction Study," J. Phys. Chem. Solids, 32 [6] 1315-20 (1971).   DOI   ScienceOn
14 L. Neel, "Superparamagnetisme Des Grains Tres Fins Antiferromagnetiques (in French)," Compt. Rend. Acad. Sci., 252 [26] 4075-79 (1961).
15 T.-J. Park, G. C. Papaefthymiou, A. J. Viescas, A. R. Moodenbaugh, and S. S. Wong, "Size-dependent Magnetic Properties of Single-crystalline Multiferroic $BiFeO_3$ Nanoparticles," Nano Lett., 7 [3] 766-72 (2007).   DOI   ScienceOn
16 S. A. T. Redfern, R. J. Harrison, H. St. C. O'Neill, and D. R. R. Wood, "Thermodynamics and Kinetics of Cation Ordering in $MgAl_2O_4$ Spinel up to $1600^{\circ}c$ from in Situ Neutron Diffraction," Am. Miner., 84 [3] 299-310 (1999).
17 H. Schmalzried, "Rontgenographische Untersuchungen der Kationenverteilung in Spinellphasen (in German)," Z. Physik. Chem. NF, 28 [3/4] 203-19 (1961).   DOI
18 H. St. O'Neill and A. Navrotsky, "Simple Spinels: Crystallographic Parameters, Cation Radii, Lattice Energies, and Cation Distribution," Am. Mineral., 68 [1-2] 181-94 (1983)
19 K.D. Becker and F. Rau, "High Temperature Ligand Field Spectra in Spinels: Cation Disorder and Cation Kinetics in $NiAl_2O_4$," Ber. Bunsenges. Phys. Chem., 91 [11] 1279-82 (1987)   DOI
20 Z. Wong, P. Lazor, S. K. Saxena, and G. Artioli, "High-Pressure Raman Spectroscopic Study of Spinel ($ZnCr_2O_4$)," J. Solid State Chem., 165 [1] 165-70 (2002).   DOI   ScienceOn
21 V. Sepelak, S. Indris, P. Heitjans, and K. D. Becker, "Direct Determination of the Cation Disorder in Nanoscale Spinels by NMR, XPS, and Mossbauer Spectroscopy," J. Alloy. Compd., 434-435 [SPEC.ISS] 776-78 (2007).   DOI
22 V. Sepelak and K. D. Becker, "Comparison of the Cation Inversion Parameter of the Nanoscale Milled Spinel Ferrites with that of the Quenched Bulk Materials," Mater. Sci. Eng. A, 375-377 [1-2] 861-64 (2004).   DOI
23 V. Sepelak, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F. J. Litterst, I. Bergmann, and K. D. Becker, "Nonequilibrium Cation Distribution, Canted spin Arrangement, and Enhanced Magnetization in Nanosized $MgFe_2O_4$ Prepared by a One-step Mechanochemical Route," Chem. Mater., 18 [13] 3057-67 (2006).   DOI   ScienceOn
24 P. Balaz, Mechanochemistry in Nanoscience and Minerals Engineering, Springer, Berlin, 2008.
25 S. Yin, H. Yamaki, Q. Zhang, M. Komatsu, J. Wang, Q. Tang, F. Saito, and T. Sato, "Mechanochemical Synthesis of Nitrogendoped Titania and its Visible Light Induced $NO_x$ Destruction Ability," Solid State Ionics, 172 [1-5] 205-9 (2004).   DOI
26 M. L. Ovecoglu and B. Ozkal, "Mechanochemical Synthesis of WC Powders by Mechanical Alloying," Key Eng. Mater., 264-268 [1] 89-92 (2004).   DOI
27 E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis, Kluwer Academic Pub., Boston, 2001.
28 V. Sepelak, I. Bergmann, S. Indris, A. Feldhoff, H. Hahn, K. D. Becker, C. P. Grey, and P. Heitjans, "High-resolution $^{27}Al$ MAS NMR Spectroscopic Studies of the Response of Spinel Aluminates to Mechanical Action," J. Mat. Chem., 21 [23] 8332-37 (2011).   DOI   ScienceOn
29 V. Sepelak, K. D. Becker, I. Bergmann, S. Suzuki, S. Indris, A. Feldhoff, P. Heitjans, and C. P. Grey, "A One-step Mechanochemical Route to Core-Shell $Ca_2SnO_4$ Nanoparticles Followed by $^{119}Sn$ MAS NMR and $^{119}Sn$ Mossbauer Spectroscopy," Chem. Mater., 21 [12] 2518-24 (2009).   DOI   ScienceOn
30 C. Deidda, F. Delogu, and G. Cocco, "In Situ Characterisation of Mechanically-induced Self-propagating Reactions," J. Mater. Sci., 39 [16-17] 5315-18 (2004).   DOI
31 G. Manai, F. Delogu, L. Schiffini, and G. Cocco, "Mechanically Induced Self-propagating Combustions: Experimental Findings and Numerical Simulation Results," J. Mater. Sci., 39 [16-17] 5319-24 (2004).   DOI
32 http://www.fritsch.de/.
33 C. Zhou, T. C. Schulthess, and D. P. Landau, "Monte Carlo Simulations of $NiFe_2O_4$ Nanoparticles," J. Appl. Phys., 99 [8] 08H9061-3 (2006).
34 W. Ostwald, Handbuch der Allgemeinen Chemie (in German), Vol. 1, p. 70, Akademische Verlagsgesellschaft, Leipzig, 1919.
35 A. Goldman, Modern Ferrite Technology, Springer, New York, 2006.
36 M. C. Lea, "Disruption of the Silver Haloid Molecule by Mechanical Force," Phil. Mag., 34 [1] 46-50 (1892).   DOI
37 L. Takacs, "M. Carey Lea, the First Mechanochemist," J. Mat. Sci., 39 [16-17] 4987-93 (2004).   DOI
38 G. Heinicke, Tribochemistry, p.15, Akademie Verlag, Berlin, 1984.
39 IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8.
40 S. Kipp, V. Sepelak, and K.-D. Becker, "Mechanochemie: Chemie mit dem Hammer (in German)," Chemie Unserer Zeit, 39 [6] 384-92 (2005).   DOI   ScienceOn
41 M. K. Beyer and H. Clausen-Schaumann, "Mechanochemistry: The Mechanical Activation of Covalent Bonds," Chem. Rev., 105 [8] 2921-48 (2005).   DOI   ScienceOn
42 V. V. Boldyrev, "Mechanochemistry and Mechanical Activation of Solids," Russ. Chem. Rev., 75 [3] 177-89 (2006).   DOI   ScienceOn
43 F. Delogu and G. Mulas, Experimental and Theoretical Studies in Modern Mechanochemistry, Transworld Research Network, Kerala, 2010.