• Title/Summary/Keyword: mRNP

Search Result 39, Processing Time 0.034 seconds

A systematic mRNA control mechanism for germline stem cell homeostasis and cell fate specification

  • Lee, Myon-Hee;Mamillapalli, Srivalli Swathi;Keiper, Brett D.;Cha, Dong Seok
    • BMB Reports
    • /
    • v.49 no.2
    • /
    • pp.93-98
    • /
    • 2016
  • Germline stem cells (GSCs) are the best understood adult stem cell types in the nematode Caenorhabditis elegans, and have provided an important model system for studying stem cells and their cell fate in vivo, in mammals. In this review, we propose a mechanism that controls GSCs and their cell fate through selective activation, repression and mobilization of the specific mRNAs. This mechanism is acutely controlled by known signal transduction pathways (e.g., Notch signaling and Ras-ERK MAPK signaling pathways) and P granule (analogous to mammalian germ granule)-associated mRNA regulators (FBF-1, FBF-2, GLD-1, GLD-2, GLD-3, RNP-8 and IFE-1). Importantly, all regulators are highly conserved in many multi-cellular animals. Therefore, GSCs from a simple animal may provide broad insight into vertebrate stem cells (e.g., hematopoietic stem cells) and their cell fate specification.

Mammalian RNA Granules

  • Jayabalan, Aravinth Kumar;Ohn, Takbum
    • Biomedical Science Letters
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • RNA granules such as Stress Granules (SG) and P-Bodies (PB) are aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes induced by a wide range of stresses. Over the past decade, extensive studies described key components of RNA granules, their molecular interactions and signaling pathways require for their assembly and disassembly. However, researches defining their exact roles under stress conditions have not been performed so far, although several studies suggested their roles in neurodegenerative diseases recently. In this review, we provide an introduction about their basic properties, key components, and the dynamic nature for their assembly.

TNF-${\alpha}$ Up-regulated the Expression of HuR, a Prognostic Marker for Ovarian Cancer and Hu Syndrome, in BJAB Cells

  • Lee, Kyung-Yeol
    • IMMUNE NETWORK
    • /
    • v.4 no.3
    • /
    • pp.184-189
    • /
    • 2004
  • Background: Hu syndrome, a neurological disorder, is characterized by the remote effect of small cell lung cancer on the neural degeneration. The suspicious effectors for this disease are anti-Hu autoantibodies or Hu-related CD8+ T lymphocytes. Interestingly, the same effectors have been suggested to act against tumor growth and this phenomenon may represent natural tumor immunity. For these diagnostic and therapeutic reasons, the demand for antibodies against Hu protein is rapidly growing. Methods: Polyclonal and monoclonal antibodies were generated using recombinant HuR protein. Western blot analyses were performed to check the specificity of generated antibodies using various recombinant proteins and cell lysates. Extracellular stimuli for HuR expression had been searched and HuR-associated proteins were isolated from polysome lysates and then separated in a 2-dimensional gel. Results: Polyclonal and monoclonal antibodies against HuR protein were generated and these antibodies showed HuR specificity. Antibodies were also useful to detect and immunoprecipitate endogenous HuR protein in Jurkat and BJAB. This report also revealed that TNF-${\alpha}$ treatment in BJAB up-regulated HuR expression. Lastly, protein profile in HuR-associated mRNAprotein complexes was mapped by 2-dimensional gel electrophoresis. Conclusion: This study reported that new antibodies against HuR protein were successfully generated. Currently, project to develop a diagnostic kit is in process. Also, this report showed that TNF-${\alpha}$ up-regulated HuR expression in BJAB and protein profile associated with HuR protein was mapped.

Transcriptome sequencing revealed the inhibitory mechanism of ketoconazole on clinical Microsporum canis

  • Wang, Mingyang;Zhao, Yan;Cao, Lingfang;Luo, Silong;Ni, Binyan;Zhang, Yi;Chen, Zeliang
    • Journal of Veterinary Science
    • /
    • v.22 no.1
    • /
    • pp.4.1-4.13
    • /
    • 2021
  • Background: Microsporum canis is a zoonotic disease that can cause dermatophytosis in animals and humans. Objectives: In clinical practice, ketoconazole (KTZ) and other imidazole drugs are commonly used to treat M. canis infection, but its molecular mechanism is not completely understood. The antifungal mechanism of KTZ needs to be studied in detail. Methods: In this study, one strain of fungi was isolated from a canine suffering with clinical dermatosis and confirmed as M. canis by morphological observation and sequencing analysis. The clinically isolated M. canis was treated with KTZ and transcriptome sequencing was performed to identify differentially expressed genes in M. canis exposed to KTZ compared with those unexposed thereto. Results: At half-inhibitory concentration (½MIC), compared with the control group, 453 genes were significantly up-regulated and 326 genes were significantly down-regulated (p < 0.05). Quantitative reverse transcription polymerase chain reaction analysis verified the transcriptome results of RNA sequencing. Gene ontology enrichment analysis and Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that the 3 pathways of RNA polymerase, steroid biosynthesis, and ribosome biogenesis in eukaryotes are closely related to the antifungal mechanism of KTZ. Conclusions: The results indicated that KTZ may change cell membrane permeability, destroy the cell wall, and inhibit mitosis and transcriptional regulation through CYP51, SQL, ERG6, ATM, ABCB1, SC, KER33, RPA1, and RNP genes in the 3 pathways. This study provides a new theoretical basis for the effective control of M. canis infection and the effect of KTZ on fungi.

Identification of Neuregulin-2 as a novel stress granule component

  • Kim, Jin Ah;Jayabalan, Aravinth Kumar;Kothandan, Vinoth Kumar;Mariappan, Ramesh;Kee, Younghoon;Ohn, Takbum
    • BMB Reports
    • /
    • v.49 no.8
    • /
    • pp.449-454
    • /
    • 2016
  • Stress Granules (SGs) are microscopically visible, phase dense aggregates of translationally stalled messenger ribonucleoprotein (mRNP) complexes formed in response to distinct stress conditions. It is generally considered that SG formation is induced to protect cells from conditions of stress. The precise constituents of SGs and the mechanism through which SGs are dynamically regulated in response to stress are not completely understood. Hence, it is important to identify proteins which regulate SG assembly and disassembly. In the present study, we report Neuregulin-2 (NRG2) as a novel component of SGs; furthermore, depletion of NRG2 potently inhibits SG formation. We also demonstrate that NRG2 specifically localizes to SGs under various stress conditions. Knockdown of NRG2 has no effect on stress-induced polysome disassembly, suggesting that the component does not influence early step of SG formation. It was also observed that reduced expression of NRG2 led to marginal increase in cell survival under arsenite-induced stress.

Interaction of Ras-GTPase-activating Protein SH3 Domain-binding Proteins 2, G3BP2, With the C-terminal Tail Region of KIF5A (Ras-GTPase-activating protein SH3 domain-binding proteins 2, G3BP2와 KIF5A C-말단 꼬리 영역과의 결합)

  • Jeong, Young Joo;Jang, Won Hee;Lee, Won Hee;Kim, Mooseong;Kim, Sang-Jin;Urm, Sang-Hwa;Moon, Il Soo;Seog, Dae-Hyun
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1191-1198
    • /
    • 2017
  • Vesicles and organelles are transported along microtubule and delivered to appropriate compartments in cells. The intracellular transport process is mediated by molecular motor proteins, kinesin, and dynein. Kinesin is a plus-end-directed molecular motor protein that moves the various cargoes along microtubule tracks. Kinesin 1 is first isolated from squid axoplasm is a dimer of two heavy chains (KHCs, also called KIF5s), each of which is associated with the light chain (KLC). KIF5s interact with many different binding proteins through their carboxyl (C)-terminal tail region, but their binding proteins have yet to be specified. To identify the interacting proteins for KIF5A, we performed the yeast two-hybrid screening and found a specific interaction with Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2), which is involved in stress granule formation and mRNA-protein (mRNP) localization. G3BP2 bound to the C-terminal 73 amino acids of KIF5A but did not interact with the KIF5B, nor the KIF5C in the yeast two-hybrid assay. The arginine-glycine-glycine (RGG)/Gly-rich region domain of G3BP2 is a minimal binding domain for interaction with KIF5A. However, G3BP1 did not interact with KIF5A. When co-expressed in HEK-293T cells, G3BP2 co-localized with KIF5A and was co-immunoprecipitated with KIF5A. These results indicate that G3BP2, which was originally identified as a Ras-GAP SH3 domain-binding protein, is a protein that interacts with KIF5A.

Glucose Controls the Expression of Polypyrimidine Tract-Binding Protein 1 via the Insulin Receptor Signaling Pathway in Pancreatic β Cells

  • Jeong, Da Eun;Heo, Sungeun;Han, Ji Hye;Lee, Eun-young;Kulkarni, Rohit N.;Kim, Wook
    • Molecules and Cells
    • /
    • v.41 no.10
    • /
    • pp.909-916
    • /
    • 2018
  • In pancreatic ${\beta}$ cells, glucose stimulates the biosynthesis of insulin at transcriptional and post-transcriptional levels. The RNA-binding protein, polypyrimidine tract-binding protein 1 (PTBP1), also named hnRNP I, acts as a critical mediator of insulin biosynthesis through binding to the pyrimidine-rich region in the 3'-untranslated region (UTR) of insulin mRNA. However, the underlying mechanism that regulates its expression in ${\beta}$ cells is unclear. Here, we report that glucose induces the expression of PTBP1 via the insulin receptor (IR) signaling pathway in ${\beta}$ cells. PTBP1 is present in ${\beta}$ cells of both mouse and monkey, where its levels are increased by glucose and insulin, but not by insulin-like growth factor 1. PTBP1 levels in immortalized ${\beta}$ cells established from wild-type (${\beta}IRWT$) mice are higher than levels in ${\beta}$ cells established from IR-null (${\beta}IRKO$) mice, and ectopic re-expression of IR-WT in ${\beta}IRKO$ cells restored PTBP1 levels. However, PTBP1 levels were not altered in ${\beta}IRKO$ cells transfected with IR-3YA, in which the Tyr1158/1162/1163 residues are substituted with Ala. Consistently, treatment with glucose or insulin elevated PTBP1 levels in ${\beta}IRWT$ cells, but not in ${\beta}IRKO$ cells. In addition, silencing Akt significantly lowered PTBP1 levels. Thus, our results identify insulin as a pivotal mediator of glucose-induced PTBP1 expression in pancreatic ${\beta}$ cells.

Regulation of Abiotic Stress Response by Alternative Splicing in Plants (식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절)

  • Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.

Ataxin-2 Dysregulation Triggers a Compensatory Fragile X Mental Retardation Protein Decrease in Drosophila C4da Neurons

  • Cha, In Jun;Lee, Davin;Park, Sung Soon;Chung, Chang Geon;Kim, Seung Yeon;Jo, Min Gu;Kim, Seung Yeol;Lee, Byung-Hoon;Lee, Young-Sam;Lee, Sung Bae
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.870-879
    • /
    • 2020
  • Dendrites require precise and timely delivery of protein substrates to distal areas to ensure the correct morphology and function of neurons. Many of these protein substrates are supplied in the form of ribonucleoprotein (RNP) complex consisting of RNA-binding proteins (RBPs) and mRNAs, which are subsequently translated in distal dendritic areas. It remains elusive, however, whether key RBPs supply mRNA according to local demands individually or in a coordinated manner. In this study, we investigated how Drosophila sensory neurons respond to the dysregulation of a disease-associated RBP, Ataxin-2 (ATX2), which leads to dendritic defects. We found that ATX2 plays a crucial role in spacing dendritic branches for the optimal dendritic receptive fields in Drosophila class IV dendritic arborization (C4da) neurons, where both expression level and subcellular location of ATX2 contribute significantly to this effect. We showed that translational upregulation through the expression of eukaryotic translation initiation factor 4E (eIF4E) further enhanced the ATX2-induced dendritic phenotypes. Additionally, we found that the expression level of another disease-associated RBP, fragile X mental retardation protein (FMRP), decreased in both cell bodies and dendrites when neurons were faced with aberrant upregulation of ATX2. Finally, we revealed that the PAM2 motif of ATX2, which mediates its interaction with poly(A)-binding protein (PABP), is potentially necessary for the decrease of FMRP in certain neuronal stress conditions. Collectively, our data suggest that dysregulation of RBPs triggers a compensatory regulation of other functionally-overlapping RBPs to minimize RBP dysregulation-associated aberrations that hinder neuronal homeostasis in dendrites.