Browse > Article
http://dx.doi.org/10.5352/JLS.2017.27.10.1191

Interaction of Ras-GTPase-activating Protein SH3 Domain-binding Proteins 2, G3BP2, With the C-terminal Tail Region of KIF5A  

Jeong, Young Joo (Department of Biochemistry, Inje University College of Medicine)
Jang, Won Hee (Department of Biochemistry, Inje University College of Medicine)
Lee, Won Hee (Department of Neurosurgery, Inje University College of Medicine)
Kim, Mooseong (Department of Neurosurgery, Inje University College of Medicine)
Kim, Sang-Jin (Department of Neurology, Inje University College of Medicine)
Urm, Sang-Hwa (Department of Preventive Medicine, Inje University College of Medicine)
Moon, Il Soo (Departments of Anatomy, College of Medicine, Dongguk University)
Seog, Dae-Hyun (Department of Biochemistry, Inje University College of Medicine)
Publication Information
Journal of Life Science / v.27, no.10, 2017 , pp. 1191-1198 More about this Journal
Abstract
Vesicles and organelles are transported along microtubule and delivered to appropriate compartments in cells. The intracellular transport process is mediated by molecular motor proteins, kinesin, and dynein. Kinesin is a plus-end-directed molecular motor protein that moves the various cargoes along microtubule tracks. Kinesin 1 is first isolated from squid axoplasm is a dimer of two heavy chains (KHCs, also called KIF5s), each of which is associated with the light chain (KLC). KIF5s interact with many different binding proteins through their carboxyl (C)-terminal tail region, but their binding proteins have yet to be specified. To identify the interacting proteins for KIF5A, we performed the yeast two-hybrid screening and found a specific interaction with Ras-GTPase-activating protein (GAP) Src homology3 (SH3)-domain-binding protein 2 (G3BP2), which is involved in stress granule formation and mRNA-protein (mRNP) localization. G3BP2 bound to the C-terminal 73 amino acids of KIF5A but did not interact with the KIF5B, nor the KIF5C in the yeast two-hybrid assay. The arginine-glycine-glycine (RGG)/Gly-rich region domain of G3BP2 is a minimal binding domain for interaction with KIF5A. However, G3BP1 did not interact with KIF5A. When co-expressed in HEK-293T cells, G3BP2 co-localized with KIF5A and was co-immunoprecipitated with KIF5A. These results indicate that G3BP2, which was originally identified as a Ras-GAP SH3 domain-binding protein, is a protein that interacts with KIF5A.
Keywords
Binding protein; kinesin; microtubule; Ras signaling; SH3 domain;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Nakajima, K., Yin, X., Takei, Y., Seog, D. H., Homma, N. and Hirokawa, N. 2012. Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron 76, 945-961.   DOI
2 Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I. K., Graham, F. L., Gaskell, P. C., Dearlove, A., Pericak-Vance, M. A., Rubinsztein, D. C. and Marchuk, D. A. 2002. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). Am. J. Hum. Genet. 71, 1189-1194.   DOI
3 Seog, D. H., Lee, D. H. and Lee, S. K. 2004. Molecular motor proteins of the kinesin superfamily proteins (KIFs): structure, cargo and disease. J. Kor. Med. Sci. 19, 1-7.   DOI
4 Setou, M., Seog, D. H., Tanaka, Y., Kanai, Y., Takei, Y., Kawagishi, M. and Hirokawa, N. 2002. Glutamate-receptor-interactingprotein GRIP1 directly steers kinesin to dendrites. Nature 417, 83-87.   DOI
5 Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A. and Hirokawa, N. 1998. Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147-1158.   DOI
6 Macara, I. G. 2001. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65, 570-594.   DOI
7 Tourriere, H., Chebli, K., Zekri, L., Courselaud, B., Blanchard, J.M., Bertrand, E. and Tazi, J. 2003. The RasGAP associated endoribonuclease G3BP assembles stress granules. J. Cell Biol. 160, 823-831.   DOI
8 Hirokawa, N., Niwa, S. and Tanaka, Y. 2010. Molecular motors in neurons: transport mechanisms and roles in brain function, development, and disease. Neuron 68, 610-638.   DOI
9 Hirokawa, N., Noda, Y., Tanaka, Y. and Niwa, S. 2009. Kinesin superfamily motor proteins and intracellular transport. Nat. Rev. Mol. Cell Biol. 10, 682-696.
10 Irvine, K., Stirling, R., Hume, D. and Kennedy, D. 2004. Rasputin, more promiscuous than ever: a review of G3BP. Int. J. Dev. Biol. 48, 1065-1077.   DOI
11 Jang, W. H. and Seog, D. H. 2013. Kinesin superfamily-associated protein 3 (KAP3) mediates the interaction between Kinesin-II motor subunits and HS-1-associated protein X-1 (HAX-1) through direct binding. J. Life Sci. 23, 978-983.   DOI
12 Kennedy, D., French, J., Guitard, E., Ru, K., Tocque, B. and Mattick, J. 2001. Characterization of G3BPs: tissue specific expression, chromosomal localisation and rasGAP (120) binding studies. J. Cell Biochem. 84, 173-187.
13 Xia, C. H., Roberts, E. A., Her, L. S., Liu, X., Williams, D. S., Cleveland, D. W. and Goldstein, L. S. 2003. Abnormal neurofilament transport caused by targeted disruption of neuronal kinesin heavy chain KIF5A. J. Cell Biol. 161, 55-66.   DOI
14 Anderson, P. and Kedersha, N. 2006. RNA granules. J. Cell Biol. 172, 803-808.   DOI
15 Anderson, P. and Kedersha, N. 2008. Stress granules: the tao of RNA triage. Trends Biochem. Sci. 33, 141-150.   DOI
16 Jang, W. H., Jeong, Y. J., Urm, S. H. and Seog, D. H. 2016. The scaffolding protein WAVE1 associates with kinesin 1 through the tetratricopeptide repeat (TPR) domain of the kinesin lght chain (KLC). J. Life Sci. 26, 963-969.   DOI
17 Kanai, Y., Dohmae, N. and Hirokawa, N. 2004. Kinesin transports RNA: isolation and characterization of an RNAtransporting granule. Neuron 43, 513-525.   DOI
18 Kanai, Y., Okada, Y., Tanaka, Y., Harada, A., Terada, S. and Hirokawa, N. 2000. KIF5C, a novel neuronal kinesin enriched in motor neurons. J. Neurosci. 20, 6374-6384.   DOI
19 Kedersha, N., Panas, M. D., Achorn, C. A., Lyons, S., Tisdale, S., Hickman, T., Thomas, M., Lieberman, J., McInerney, G. M., Ivanov, P. and Anderson, P. 2016. G3BP-Caprin1-USP10 complexes mediate stress granule condensation and associate with 40S subunits. J. Cell Biol. 212, 845-860.   DOI
20 Anderson, P. and Kedersha, N. 2009. RNA granules: posttranscriptional and epigenetic modulators of gene expression. Nat. Rev. Mol. Cell Biol. 10, 430-436.   DOI
21 Buchan, J. R. and Parker, R. 2009. Eukaryotic stress granules: the ins and outs of translation. Mol. Cell 36, 932-941.   DOI
22 Angenstein, F., Evans, A. M., Settlage, R. E., Moran, S. T., Ling, S. C., Klintsova, A. Y., Shabanowitz, J., Hunt, D. F. and Greenough, W. T. 2002. A receptor for activated C kinase is part of messenger ribonucleoprotein complexes associated with polyA-mRNAs in neurons. J. Neurosci. 22, 8827-8837.   DOI
23 Bikkavilli, R. K. and Malbon, C. C. 2011. Arginine methylation of G3BP1 in response to Wnt3a regulates ${\beta}$-catenin mRNA. J. Cell Sci. 124, 2310-2320.   DOI
24 Brendza, R. P., Serbus, L. R., Duffy, J. B. and Saxton, W. M. 2000. A function for kinesin I in the posterior transport of oskar mRNA and Staufen protein. Science 289, 2120-2122.   DOI
25 Costa, M., Ochem, A., Staub, A. and Falaschi, A. 1999. Human DNA helicase VIII: a DNA and RNA helicase corresponding to the G3BP protein, an element of the ras transduction pathway. Nucleic Acids Res. 27, 817-821.   DOI
26 Diefenbach, R. J., Mackay, J. P., Armati, P. J. and Cunningham, A. L. 1998. The C-terminal region of the stalk domain of ubiquitous human kinesin heavy chain contains the binding site for kinesin light chain. Biochemistry 37, 16663-16670.   DOI
27 Diefenbach, R. J., Miranda-Saksena, M., Diefenbach, E., Holland, D. J., Boadle, R. A., Armati, P. J. and Cunningham, A. L. 2002. Herpes simplex virus tegument protein US11 interacts with conventional kinesin heavy chain. J. Virol. 76, 3282-3291.   DOI
28 Furukawa, M. T., Sakamoto, H. and Inoue, K. 2015. Interaction and colocalization of HERMES/RBPMS with NonO, PSF, and G3BP1 in neuronal cytoplasmic RNP granules in mouse retinal line cells. Genes Cells 20, 257-266.   DOI
29 Matsuki, H., Takahashi, M., Higuchi, M., Makokha, G. N., Oie, M. and Fujii, M. 2013. Both G3BP1 and G3BP2 contribute to stress granule formation. Genes Cells 18, 135-146.   DOI
30 Martin, S., Zekri, L., Metz, A., Maurice, T., Chebli, K., Vignes, M. and Tazi, J. 2013. Deficiency of G3BP1, the stress granules assembly factor, results in abnormal synaptic plasticity and calcium homeostasis in neurons. J. Neurochem. 125, 175-184.   DOI
31 Muresan, Z. and Muresan, V. 2005. Coordinated transport of phosphorylated amyloid-beta precursor protein and c-Jun NH2-terminal kinase-interacting protein-1. J. Cell Biol. 171, 615-625.   DOI