• Title/Summary/Keyword: mRNA levels

Search Result 2,603, Processing Time 0.042 seconds

Comparative Study of the Biological Activity Effects of Manjakani (Quercus infectoria Olivier) Extract using Water and 80% Ethanol (열수 및 80% 에탄올로 추출한 만자카니(Quercus infectoria Olivier)의 생리활성 비교연구)

  • Lee, Hea-Jin;Kim, Dong-Han;Lee, Eun-Jin;Lim, Mi-Hye
    • Journal of the Korean Applied Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.124-132
    • /
    • 2020
  • The purpose of this study was to investigate the biological activities such as cytotoxicity and anti-inflammation using Manjakani (Quercus infectoria Olivier) extract. Manjakani was extracted from hot DW and 80% ethanol. Cell viability was assessed using MTT assay on RAW 264.7 cells. Also, anti-inflammatory activities were measured through changes in the levels of nitric oxide (NO), prostaglandin E2 (PGE2), leukotrien B4 (LTB4), pro-inflammatory cytokines (IL-1β, IL-6 and tumor necrosis factor (TNF)-α) and transcription factor on LPS-induced RAW264.7 cells. The results confirmed that significant cytotoxicity does not appear in the concentration range of 1, 5, and 10 ㎍/㎖ of both extracts of this study. The production of NO was slowed by approximately MDE 37.2% and MEE 43.7% at 10 ㎍/㎖ concentration. Also, level of PGE2 and LTB4 was decreased MDE 30.9%/MEE 43.7% and MDE 37.1%/MEE 43.7%. In the case of inflammatory cytokine was reduced to MDE 38.8%/MEE 50.8% for IL-1β, MDE 35.0%/MEE 44.2% for IL-6 and MDE 31.9%/MEE 36.6% for TNF-α at 10 ㎍/㎖ concentration. The mRNA expression of NF-κB, iNOS and COX-2 significantly decreased by MDE 44.0%/MEE 16.0%, MDE 44.0%/MEE 55.0% and MDE 45.0%/MEE 40.0%, respectively, following the 10 ㎍/mL sample treatment when compared to the control. Both extracts were effective in anti-inflammatory activity. In addition, both extracts showed efficient changes of production of NO, PGE2, LTB4, pro-inflammatory cytokines and transcription factor. But MEE was found to have a higher inhibitory effect than MDE. In other words, Manjakani was showed significant biological activities showing anti-inflammation without cytotoxicity. These results will be provided as fundamental data for further development of the new health food and therapeutics related to the results above.

Antioxidant capacity and Raw 264.7 macrophage anti-inflammatory effect of the Tenebrio Molitor (갈색거저리(Tenebrio Molitor)의 항산화능과 Raw 264.7 대식세포의 항염증 효과)

  • Yu, Jae-Myo;Jang, Jae-Yoon;Kim, Hyeon-Jeong;Cho, Yong-Hun;Kim, Dong-in;Kwon, O-jun;Cho, Yeong-Je;An, Bong-Jeun
    • Food Science and Preservation
    • /
    • v.23 no.6
    • /
    • pp.890-898
    • /
    • 2016
  • The purpose of this paper is to investigate potential anti-inflammatory and anti-oxidant effects of Tenebrio molitor. Macrophage cell response by outside stimulation leads expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$), interleukin-6 (IL-6), $interleukin-1{\beta}$ ($IL-1{\beta}$), and trigger expression of genes which are affected by inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), resulting in formation of inflammatory factors like nitric oxide (NO) and Prostaglandin $E_2$ (PGE2). Cell viability was determined by MTT assay. In order to investigate anti-inflammatory agents, the inhibitory effects on the production of lipopolysaccharide (LPS)-induced NO in RAW 264.7 cells were examined. T. Molitor significantly decreased the production of NO in a dose-dependent manner, and also reduced the expression of iNOS, a COX-2 protein. As a result, the levels of protein such as $PGE_2$, iNOS, COX-2 and MARKs were significantly reduced compared to non-treated group in T. Molitor water extract (TDW) treated group. Also, antioxidant effect of T. Molitor were investigated using DPPH, ABTS+ and superoxide anion radical scavenging activity tests in cell-free system. Antioxidant activity of T. molitor was found low in the DPPH radical scavenging test while high in the ABTS+ and superoxide anion radical scavenging activity tests. These results show that TDW could be an effective anti-pro-inflammatory and anti-oxidant agent.

Effects of Fermented Rice Wine by Using Mycelium of Phellinus linteus on the Expression of Inflammation-Related Proteins in Human Hepatoma Cells and Rat Liver (상황버섯 균사체를 이용한 발효주가 인체간암세포와 흰쥐 간의 염증관련 단백질 발현에 미치는 영향)

  • Ahn Seung-Min;Lee Jun-Hyuk;Choi Yung-Hyun;Lee Yong-Tae;Chung Kyung-Tae;Jeong Young-Kee;Jo Un-Bock;Choi Byung-Tae
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.101-107
    • /
    • 2006
  • We have recently discovered that mycelium of Phellinus linteus, popular medical mushrooms in Korea, possess alcohol dehydrogenase and produce alcohol. In the present study, it was examined that the effect of fermented rice wine made by using mycelium of P. linteus (FLMP) on the expression of in-flammation-related proteins in both $HepG_2$ cells and rats. To examine the effect of FLMP on the morphology and expression of inflammatory proteins in $HepG_2$ cells, the cells were incubated with ethanol, and FLMP for 24 hours, and then analyzed by microscopic observation and Western blot and reverse transcription polymerase chain reaction (RT-PCR). While ethanol induced the morphological change accompanied with cell debris formation and scattering on $HepG_2$ cells, FLMP had no effect. The results of Western blot and RT-PCR analyses showed that the level of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-1 and COX-2 was induced by ethanol, however, FLMP inhibited the expression of these proteins and its mRNAs. In the animal model, the value of flutamate oxaloacetate transaminase and glutamate pyruvate transaminase was significantly increased by administration with ethanol. But the group administrated with FLMP showed lower levels on the changes of these markers compared with ethanol-administrated group. Besides, the results of Western blot and RT-PCR analyses showed that the expression of inflammatory proteins such as iNOS, COX-1 and COX-2 was not affected by FLMP administration in rat liver. About histopathological and immunohistochemical observations, inflammatory loci were markedly decreased in the FLMP-administrated rat compared to ethanol-administrated rats and showed weaker COX-2 and iNOS jmmunoreactions. These results suggested that FLMP showed slight changes on the inflammatory proteins expression compared to ethanol and FLMP may be used as a functional alcoholic beverage.

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionicgonadotropin Receptor

  • Min, K. S.
    • Proceedings of the KSAR Conference
    • /
    • 2000.10a
    • /
    • pp.10-12
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$-subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$ -subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was. efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to consist of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t63I or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632-653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17-fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Upregulation of Connexin43 Expression in Mitral Valves in a Rabbit Model of Hypercholesterolemia (고콜레스테롤혈증을 유발한 토끼의 승모판막에서 Connexin43 발현의 증가)

  • Kwon, Jong-Bum;Park, Chan-Beom;Sa, Young-Jo;Kim, Young-Du;Moon, Seok-Whan;Kim, Chi-Kyung
    • Journal of Chest Surgery
    • /
    • v.43 no.4
    • /
    • pp.356-363
    • /
    • 2010
  • Background: Connexin 43-mediated gap junctional communication plays an important role in atherosclerosis. Numerous studies have demonstrated a correlation between mitral valve annular calcification and atherosclerotic disease. However, the relevance of connexin 43 to mitral valve disease remains unclear. We hypothesized that the mechanism contributing to mitral valve disease is associated with alterations in cell-to-cell communication mediated by changes in Connexin 43 expression. Material and Method: Twenty male New Zealand rabbits were divided into two groups: animals in group 1 (n=10) were fed a normal chow diet, whilst those in group 2 (n=10) received a diet containing 1% cholesterol for 12 weeks. After sacrificing the animals, the mitral valves were excised and analyzed with immunohistochemical staining and Real-time Reverse Transcriptase polymerase chain reaction (real time RT-PCR). Result: Myofibroblasts and macrophages were found concentrated within the endothelial layer on the ventricular side of the leaflet in the cholesterol diet group. Immunohistochemial staining showed elevated expression of connexin43 in the cholesterol diet group. Real-time RT-PCR revealed increased connexin43 mRNA levels in mitral valves from hypercholesterolemic animals. Conclusion: Our finding that connexin43 expression is increased in mitral valves of hypercholesterolemic rabbits suggests that alterations in cell-to-cell communication via connexin43 containing gap junctions play a role in the development of mitral valve disease in hypercholesterolemia.

Biological Functions of N- and O-linked Oligosaccharides of Equine Chorionic Gonadotropin and Lutropin/Chorionic Gonadotropin Receptor

  • Min, K.S.
    • Korean Journal of Animal Reproduction
    • /
    • v.24 no.4
    • /
    • pp.357-364
    • /
    • 2000
  • Members of the glycoprotein family, which includes CG, LH, FSH and TSH, comprise two noncovalently linked $\alpha$- and $\beta$-subunits. Equine chorionic gonadotropin (eCG), known as PMSG, has a number of interesting and unique characteristics since it appears to be a single molecule that possesses both LH- and FSH-like activities in other species than the horse. This dual activity of eCG in heterologous species is of fundamental interest to the study of the structure-function relationships of gonadotropins and their receptors. CG and LH $\beta$ genes are different in primates. In horse, however, a single gene encodes both eCG and eLH $\beta$ -subunits. The subunit mRNA levels seem to be independently regulated and their imbalance may account for differences in the quantities of $\alpha$ - and $\beta$-subunits in the placenta and pituitary. The dual activities of eCG could be separated by removal of the N-linked oligosaccharide on the $\alpha$-subunit Asn 56 or CTP-associated O-linked oligosaccharides. The tethered-eCG was efficiently secreted and showed similar LH-like activity to the dimeric eCG. Interestingly, the FSH-like activity of the tethered-eCG was increased markedly in comparison with the native and wild type eCG. These results also suggest that this molecular can implay particular models of FSH-like activity not LH-like activity in the eCG/indicate that the constructs of tethered molecule will be useful in the study of mutants that affect subunit association and/or secretion. A single-chain analog can also be constructed to include additional hormone-specific bioactive generating potentially efficacious compounds that have only FSH-like activity. The LH/CG receptor (LH/CGR), a membrane glycoprotein that is present on testicular Leydig cells and ovarian theca, granulosa, luteal, and interstitial cells, plays a pivotal role in the regulation of gonadal development and function in males as well as in nonpregnant and pregnant females. The LH/CGR is a member of the family of G protein-coupled receptors and its structure is predicted to of a large extracellular domain connected to a bundle of seven membrane-spanning a-helices. The LH/CGR phosphorylation can be induced with a phorbol ester, but not with a calcium ionophore. The truncated form of LHR also was down-regulated normally in response to hCG stimulation. In contrast, the cell lines expressing LHR-t631 or LHR-628, the two phosphorylation-negative receptor mutant, showed a delay in the early phase of hCG-induced desensitization, a complete loss of PMA-induced desensitization, and an increase in the rate of hCG-induced receptor down-regulation. These results clearly show that residues 632~653 in the C-terminal tail of the LHR are involved in PMA-induced desensitization, hCG-induced desensitization, and hCG-induced down-regulation. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty. Cells expressing LHR-D556Y bind hCG with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. This mutation enhances the internalization of the free and agoinst-occupied receptors ~2- and ~17- fold, respectively. We conclude that the state of activation of the LHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing LHR-L435R is due to the fast rate of internalization of the bound hCG. This statement is supported by the finding that hCG responsiveness is restored when the cells are lysed and signal transduction is measured in a subcellular fraction (membranes) that cannot internalize the bound hormone.

  • PDF

Expressional Analysis of Superoxide Dismutase in Olive Flounder (Paralichthys olivaceus) against Viral Hemorrhagic Septicemia Virus Infection (Viral hemorrhagic septicemia virus (VHSV) 감염에 대한 넙치 superoxide dismutase(Of-SOD)의 발현분석)

  • Lee, Young Mee;Kim, Jung-Eun;Noh, Jae Koo;Kim, Hyun Chul;Park, Choul-Ji;Park, Jong-Won;Kim, Kyung-Kil;Lee, Jeong-Ho
    • Journal of Life Science
    • /
    • v.24 no.12
    • /
    • pp.1371-1377
    • /
    • 2014
  • Superoxide dismutase is a family of important antioxidant metalloenzymes and catalyzes the dismutation of toxic superoxide anions into dioxygen and hydrogen peroxide. A recent study identified the partial superoxide dismutase (SOD) gene in olive flounder (Paralichthys olivaceus). The same study reported that it strongly induced benzo[a]pyrene and that it was an indicator of aquatic oxidative stress responses. However, its transcriptional response against viral infection has not been investigated. In the present study, the spatial and temporal expression profiles were analyzed to investigate the function of Of-SOD in the antiviral response. The Of-SOD transcripts were ubiquitously detected at various levels in diverse tissues in a real-time PCR. The expression of Of-SOD was significantly higher in the muscles, liver, and brain but extremely low in the stomach and spleen. Following a VHSV challenge, the expression of Of-SOD increased within 3 h in the kidneys and decreased to the original level 2 days postchallenge. In muscle, liver, and brain, Of-SOD mRNA was similarly up-regulated at 3-6 h postchallenge and then decreased to the basal level. Although the expression pattern and induction time differed slightly depending on the tissue, the transcript of Of-SOD consistently increased in the acute infection response, but the expression was low in the chronic response. The expression of Of-SOD was induced after the VHSV infection, and Of-SOD was probably involved in the immune response against the viral challenge. These results suggest that SOD may play important roles in the immune defense system of P. olivaceus and perhaps contribute to the protective effects against oxidative stress in olive flounder.

Apoptosis-related Genes Altered in Bovine Cystic Ovary (난소낭종 시 변화되는 세포사멸 관련 유전자)

  • Tak, Hyun-Min;Kim, Gyu-Tae;Kim, Eun-Jin;Mun, Yun-Ja;Choe, Chang-Yong;Son, Dong-Soo;Han, Jae-Hee;Kang, Da-Won
    • Journal of Embryo Transfer
    • /
    • v.24 no.1
    • /
    • pp.57-64
    • /
    • 2009
  • This study was carried out to investigate expression of apoptosis-related differentially expressed gene (DEG) in ovaries of Korean cattle with follicular and luteal cysts and to identify the relationship between cyst and apoptosis using microarray, real-time PCR, TUNEL staining, and Western blot analysis. Microarray data showed that PIK3R2 and AKT1 were significantly up-regulated in follicular cyst, and TNF-RAF2, PRLR, FOXL2, STK4, and COL4A3 were up-regulated whereas INHA, CIDEB, BCL10, and FASLG were down-regulated in luteal cyst. Real-time PCR was performed to validate DEGs altered in luteal cyst. Of nine DEGs, four DEGs down-regulated in luteal cyst showed a positive corelation between microarray data and real-time PCR data. In this study, we focused on INHA, among many DEGs, which was highly down-regulated in both follicular and luteal cysts. Real-time PCR and micro array data showed that INHA was down-regulated by 12.3-fold and by 1.4-fold, respectively, in the bovine follicular cyst. TUNEL assay and Western blot analysis for ERK, JNK, p38, PI3K, and Akt, which were used to detect whether apoptosis is occurred, showed no significant changes in cystic ovaries (p>0.05). In the expression and activity of caspase-3, Bax, Bel-2, and Bel-xL, there was no significant changes between follicular cystic ovary and normal ovary. Rather, the expression levels of PI3K and p-Akt were decreased in follicular cystic ovary. These results suggest that deficiency of apoptosis in cystic ovary is associated with decreased expression of apoptotic effectors.

Collection, Identification and Hepatic Effect of Native Cordyceps militaris (새로운 번데기 동충하초의 수집, 동정 및 간기능에 미치는 효과)

  • Lee, Ki-Won;Nam, Byung-Hyouk;Jo, Wool-Soon;Oh, Su-Jung;Kang, Eun-Young;Cui, Yong;Lee, Jae-Yun;Cheon, Sang-Cheol;Jeong, Min-Ho;Lee, Jae-Dong
    • The Korean Journal of Mycology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2006
  • Entomopathogenic fungus Cordyceps militaris is famous for its medicinal efficacies. It has been reported to have various pharmacological activities such as anti-tumour, insecticidal, antibacterial, immunomodulatory and antioxidant. In this study, we investigated the effect of the extract of C. militaris (MPUN8501), which was identified by the analysis of the nucleotide sequences of 5.8S ribosomal RNA, on the function of liver. C. militaris powder was extracted using hot water extracts method as time, volume and temperature and using method as differential polarity of organic solvent. Each fraction was tested for the improvement of hepatic enzyme alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH) activity. The BuOH extracts (CME) had highest activity which was used for the test of toxicity and efficacy of C. militaris. The enhancing effect of CME on the activity of ADH and ALDH was much more than medicine, drink, natural tea etc. Thus CME promoted the resolution of alcohol and acetaldehyde in rats, inducing recovery to normal condition rapidly. Furthermore, oral administration of CME effectively protected the carbon tetrachloride-induced acute hepatic injury as revealed by the hematological parameters (levels of sGOT and sGPT) and histological observation. CME was ascertained to be safe by regulatory toxicity studies of single dose toxicity and genotoxicity. These results suggest that CME would be useful for the maintaining normal hepatic activity as a functional health food.

Anti-inflammatory Activities of an Ethanol Extract of Sargassum macrocarpum in Lipopolysaccharide (LPS)-stimulated RAW 264.7 Macrophages (Lipopolysaccaride로 유도된 Raw 264.7 세포에서 큰열매모자반 에탄올 추출물의 항염증 활성)

  • Cheon, Ji Min;Kim, Hyang Suk;Choi, Eun Ok;Kwon, Da Hye;Choi, Yung Hyun;Kim, Byung Woo;Hwang, Hye Jin
    • Journal of Life Science
    • /
    • v.27 no.12
    • /
    • pp.1437-1444
    • /
    • 2017
  • Sargassum macrocarpum is a widely distributed marine brown algae found in the North Pacific. The objective of this study was to evaluate the anti-inflammatory activity of an ethanol extract of S. macrocarpum (EESM). First, we investigated the anti-inflammatory activities of EESM in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. EESM treatment suppressed nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) production and inhibited the expressions of the inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels. In addition, the expression of pro-inflammatory cytokines, such as tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) and interleukin-1 beta ($IL-1{\beta}$), was decreased in a dose dependent manner. Investigation of the signaling pathways of nuclear factor kappa B ($NF-{\kappa}B$), phosphoinositide-3-kinase (PI3K)/Akt, and mitogen-activated protein kinases (MAPKs) revealed suppression of $NF-{\kappa}B$ translocation from the cytosol to nucleus by EESM treatment. The phosphorylation of the Akt and ERK proteins was also inhibited by EESM treatment. EESM treatment also stimulated the expression of the heme oxygenase-1 (HO-1) enzyme and its upstream transcription factor, nuclear factor-E2-related factor 2 (Nrf2). These results suggest that EESM has anti-inflammatory activity and could have potential uses in the field of nutraceuticals.