• Title/Summary/Keyword: mRNA 발현

Search Result 1,682, Processing Time 0.022 seconds

The Effect of Palmultang(八物湯) on the Ovarian Functions and Differential Gene Expression of Caspase-3, MAPK and MPG in Female Mice (팔물탕(八物湯)이 자성생쥐의 생식능력과 Caspase-3, MAPK 및 MPG 유전자 발현에 미치는 영향)

  • Joo, Jin-Man;Baek, Seung-Hee;Kim, Eun-Ha;Kim, Dong-Chul
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.20 no.3
    • /
    • pp.91-110
    • /
    • 2007
  • Purpose : These experiments were undertaken to evaluate the effect of administration of Palmultang on ovarian functions and differential gene expressions related cell viabilities caspase-3, MAPK and MPG in female mice. Materials and Methods : We administered the Palmultang to 6-week-old female ICR mice for 4, 8, or 12 days. The female mice were injected PMSG and hCG for ovarian hyperstimulation. And then recovered ovaries were minced and extracted mRNA and analyzed cell viability related gene expression. We chose the caspase-3 for cell apoptosis, MAPK and MPG genes for cell viability and DNA repair. To compare the differences, we set a control group treated with plain water at the same volume by the same way. Results : In case of administration of Palmultang, the mean number of total ovulated oocytes and the number of morphologically normal oocytes increased significantly compared to a control group. We were also examined the embryonic developmental competence in vitro. The administration of Palmultang in a concentration with 10 and 100 mg/ml were beneficial effect of embryonic development in preimplantation period. The administration of Palmultang play a role of prevention of cell apoptosis and DNA damages and also increased cell proliferation resulted in ovarian functions. Conclusion : From our results suggested that the medication of Palmultang has beneficial effect on reproductive functions of female mice via prevention of cell apoptosis and DNA damaging and promotion of cell proliferation.

  • PDF

The Effects of DHEA on the Antiobesity and Obese Gene Expression in Lean and Genetically Obese(ob/ob) Mice (DHEA의 항비만 효능 및 ob 유전자(leptin)의 발현에 미치는 영향)

  • 정기경;신미희;한형미;강석연;김태균;강주혜;문애리;김승희
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.391-398
    • /
    • 2000
  • Leptin, the product of the ob gene, is a small peptide molecule synthesized by white adipocytes with an important role in the regulation of body fat and food intake. Based on the evidence that synthesis of leptin is regulated by female sex hormone, estrogen, this present study was investigated whether sex hormone precursor DHEA, can regulate obese gene expression in lean and genetically obese (ob/ob) mice. Antiobesity activity of DHEA was evaluated by determining body weight, food consumption, epididymal fat weight and serum levels of cholesterol and triglyceride in ICR, C57BL/6J, and ob/ob mice. The treatment of C57BL/6J lean and obese mice with a diet containing 0.3% and 0.6% DHEA resulted in lowered rates of weight gain in comparison to non-treated mice, although much greater response was found in the obese mice. All other concentrations of DHEA (0.015%, 0.06%, 0.15%, 0.3%) except the highest one(0.6%) showed no significant effects on weight gain in ICR mice. Food consumption was significantly decreased in all mice treated with 0.6% DHEA, whereas it was not decreased in ICR mice at lower concentrations than 0.6% DHEA. DHEA decreased significantly epididymal adipose tissue weight and serum triglyceride levels dose dependently in lean and obese mice. However serum cholesterol levels were decreased at lower concentrations than 0.15% DHEA and increased at concentrations of 0.3% and 0.6% DHEA in lean and obese mice. These increases in serum cholestrol levels at high concentrations of DHEA might result from the fact that DHEA has a cholesterol moiety thereby interfered the assay system. As an approach to elucidate the mechanism for antiobesity activity of DHEA, we examined mRNA levels of obese gene in the adipocyte and obese gene product (leptin) in the serum. The results showed that DHEA did not affect obese gene expression in ICR and C57BL/6J mice. Therefore, we concluded that antiobesity activity of DHEA was not modulated by obese gene expression.

  • PDF

Investigation on the effect of water extracts of Mangifera indica leaves on the hair loss-related genes in human dermal papilla cells (망고 잎 열수 추출물의 모유두 세포에서 탈모 관련 유전자 발현에 미치는 영향 연구)

  • Choi, Youngsoo;Kim, Eunmi;Lee, Seong Hee;Han, Hyosang;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.36 no.3
    • /
    • pp.39-46
    • /
    • 2021
  • Objectives : Mangifera indica leaves are well known for having a variety of benefits, including anti-inflammatory, anti-tumor, diabetic retinopathy and diabetic vasculosis. However, the effects of Mangifera indica leaves on hair loss inhibition have not been studied. In this study, we investigated to find out the activity of Mangifera indica leaves on hair loss. Methods : 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid(ABTS) analysis was performed to confirm the antioxidant efficacy of the water extract of Mangifera indica leaves (WEML). To examine the effect of WEML on cell viability in dermal papillar (DP) cells, 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetra Zolium (MTS) analysis was performed. The changes in the mRNA expression level of the hair loss and hair growth-related genes in dermal papilla cells by WEML treatment were confirmed by quantitative RT-PCR. Results : In dermal papilla (DP) cells, ABTS analysis and MTS analysis of WEML showed antioxidant efficacy and low cytotoxicity. As a result of gene expression analysis through Quantitative RT-PCR, no changes in hair growth-related genes BMP6 and CTNNB1 was confirmed. but inhibitory activity of WEML on hair loss-related genes EGR1, SGK, DKK1, SRD5A1 and SRD5A2 was confirmed. Conclusion : We confirmed that WEML has excellent antioxidant efficacy and a inhibitory activity of hair loss-related genes including 5α-reductase genes. These results suggest that Mangifera indica leaves have a potential activity as a hair loss treatment for hair loss and hair growth. Biochemical or molecular biological research on hair loss is needed.

Investigation of the effect of Hibiscus sabdariffa L. extracts on tight-junction related genes in human keratinocyte HaCaT cells (히비스커스 추출물이 인간 각질 형성 세포의 밀착 연접 관련 유전자 발현에 미치는 영향 연구)

  • Jung, Haesoo;Kim, Eunmi;Han, Hyosang;Kim, Keekwang
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.59-67
    • /
    • 2021
  • Objectives : Hibiscus (Hibiscus sabdariffa L.) is rich in antioxidants such as flavonoids and anthocyanins and is known to have anti-inflammatory activity and anti-aging function of the skin, but there is no study on its effect on the skin barrier. This study aim to investigate the positive effect on the skin barrier by confirming the effect of water extracts of Hibiscus sabdariffa L. (WEHS) on the tight junction-related gene expression. Methods : The antioxidant efficacy of WEHS was investigated through ABTS and DPPH assays, and 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium was performed to examine the effect on cell viability. quantitative Reverse transcription polymerase chain reaction and immunoblot analysis were performed to confirm the effect of WEHS on the expression of tight junction-related genes, and immunofluorescence microscopy was used to confirm the movement of Claudin 1 protein into tight junctions. Results : WEHS showed strong antioxidant activity and induced an increase in both mRNA and protein expression levels of Claudin 1 among tight junction-related genes. The strong localization of Claudine 1 protein increased by WEHS to the tight junction was confirmed by immunofluorescence microscopy. Conclusions : Hibiscus was confirmed through this study to show antioxidant activity and the function of promoting the expression of the tight junction Claudin 1 gene, suggesting that Hibiscus can be used as a material for the prevention and treatment of skin moisturizing and atopy, which have an important influence on tight junction.

The Regulatory Effect of Angelica gigas Nakai on Immune Enhancement and Cytokine Production in vivo and in vitro (참당귀(Angelica gigas Nakai)의 체력증진 및 면역조절효과)

  • Jeon, Yong-Deok;Kim, Su-Jin
    • Korean Journal of Plant Resources
    • /
    • v.35 no.4
    • /
    • pp.411-416
    • /
    • 2022
  • Natural products are important sources for drug development because they have a wide variety of useful biological properties. Angelica gigas Nakai (AGN) has been used as an herbal medicine for treatment of colds, pain, and anemia. The present study was designed to evaluate the regulatory effect of AGN on immune enhancement in vivo and in vitro. To investigate the immune-enhancing effect of AGN, we used forced swimming test (FST) experimental model. Mice were orally administered by AGN or distilled water for 14 days and then immobility time and biological parameters in serum were measured. The results showed that immobility time in AGN treatment group was significantly reduced in comparison with the control group. Plasma levels of blood urea nitrogen and lactate dehydrogenase in AGN group was significantly decreased compared with control group. Additionally, we showed that AGN treatment significantly increased immune-related cytokines such as interleukin (IL)-4, IL-2, and interferon (IFN)-𝛾 levels in Molt-4 cells. Collectively, the findings provide experimental evidence that AGN may be effective in improving immune function.

Stable Expression and Efficient Secretion of hSCF and hINFγ Protein using Binary Vectors in Chlorella vulgaris (클로렐라에서 바이너리 벡터를 이용한 hSCF와 hINFγ 단백질의 안정적인 발현과 효율적인 분비)

  • Yu Jeong Jeong;Hee Gyung Min;Won Young Lee;Sung Chun Kim
    • Journal of Marine Bioscience and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.45-54
    • /
    • 2024
  • Microalgae have great potential in the biomedical and pharmaceutical industries as a new type of bioreactor that can produce proteins for specific purposes, including recombinant proteins, pharmaceuticals, and industrial enzymes. Despite the production advantages and importance of microalgae-based expression systems, studies on secretion efficiency are limited. In this study, for stable expression and efficient secretion of the heterologous protein (human SCF and human INFγ) in Chlorella vulgaris, we constructed SP:hSCF:His and SP:hINFγ:His plant binary vectors using the signal peptide (SP) of Chlamydomonas reinhardtii, and we obtained stable transformants through the effective agrobacterium-mediated transformation of these vectors. Transformants with accurately inserted hSCF and hINFγ demonstrated stably increased mRNA and protein expression using RT-PCR and western blotting under the same culture conditions. Following the analysis of the proteins secreted into the culture medium using ELISA, it was confirmed that hINFγ was effectively produced in the transformed C. vulgaris culture medium. The overall findings indicate that the combination of heterologous protein and SP may be crucial for ensuring the expression and secretion of recombinant proteins in Chlorella culture systems.

Molecular Characterization and Ontogenetic Expression Patterns of Recombination Activating Genes (RAG1/2) in Marine Medaka Oryzias dancena (바다송사리(Oryzias dancena)의 재조합활성화 유전자 RAG1/2의 분자 특성 및 개체발생학적 발현 패턴)

  • Tae-Su Kim;Juhwan Park;Yoon Kwon Nam;Chan-Hee Kim
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.57 no.3
    • /
    • pp.239-252
    • /
    • 2024
  • Recombination activating genes (RAGs) play a crucial role in initiating V(D)J recombination, which is essential for developing adaptive immunity in vertebrates. In this study, we cloned and characterized RAG1/2 cDNA from the marine medaka Oryzias dancena (OdRAG1/2) and investigated their mRNA expression patterns during ontogenetic developmental stages. The OdRAG1 and OdRAG2 cDNA contained open reading frames (ORFs) encoding proteins containing 1,078 and 531 amino acids, respectively. Multiple sequence alignment and phylogenetic analysis revealed that OdRAG1 and OdRAG2 are highly conserved with their corresponding orthologs, featuring distinct core and non-core regions. Notably, expression analysis showed that, in contrast to other fish RAGs studied, OdRAG1/2 expression peaked at 0 days post-hatching (DPH). Additionally, for the expression of T and B cell differentiation markers, CD3γ and CD20, also peaked at 0 DPH. Collectively, adaptive immunity in O. dancena potentially begins during embryonic development, which is critical for V(D)J recombination and essential immune component development, suggesting the early ontogenetic stage interactions between innate and adaptive immunity.

Genistein Suppresses TPA-Induced Matrix Metalloproteinases Activity and Cell Invasion in Human Breast Adenocarcinoma Cells (인체 유방암세포에서 TPA에 의해 유도된 matrix metalloproteinases 활성 및 침윤성 증대에 미치는 genistein의 영향)

  • Choi, Yung-Hyun;Kim, Sung-Ok
    • Journal of Life Science
    • /
    • v.22 no.7
    • /
    • pp.964-969
    • /
    • 2012
  • Genistein, a predominant isoflavone, has been shown to inhibit the growth of various cancer cells in vitro and in vivo without toxicity to normal cells. In the present study, we investigated the effects of genistein on the activity and the expression of matrix metalloproteinases (MMPs) in MCF-7 and MDA-MB-231 human breast adenocarcinoma cells. Our findings showed that MMP-9 and -2 activation was significantly increased in response to 12-O-tetradecanoyl phorbol-13-acetate (TPA). However, the increased activities of MMP-9 and -2 in TPA-treated cells were concentration-dependently inhibited by treatment with genistein, and this was also correlated with a decrease in the expression of their mRNA and proteins. In addition, a matrigel invasion assay showed that genistein reduced TPA-induced invasion of MCF-7 and MDA-MB-231 cells. Although further in vivo studies are needed, these results suggest that genistein treatment may inhibit tumor cell invasion and, therefore, act as a dietary source to decrease the risk of cancer metastasis.

Inhibition of Phorbol 12-myristate-13-acetate Induced Cyclooxygenase-2 Activity by Three-step Fermented Soybeans (PMA에 의해 유도된 cycooxygenase-2 활성에 대한 새로운 발효법에 의한 대두산물의 억제 효능)

  • Park, Cheol;Lee, Jeong-Ok;Ryu, Chung-Ho;Choi, Yung-Hyun
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.180-186
    • /
    • 2008
  • In this study, we examined the effects of the fermented soybeans by Bacillus subtilis (FSB) and the novel three-step fermented soybeans (TFS) on the expression and activity of COX-2 in human leukemic U937 cell model. Treatment of phorbol 12-myristate 13-acetate (PMA) significantly induced pro-inflammatory mediators such as COX-2 expression and prostaglandin $E_2\;(PGE_2)$ production, whereas the levels of COX-1 remained unchanged. However, pre-treatment with FSB and TFS significantly attenuated the PMA-induced COX-2 protein as well as mRNA, which was associated with inhibition of $PGE_2$ production. Moreover, TFS exerts a much better inhibitory activity than FSB against PMA-induced activation of COX-2 and production of $PGE_2$ in U937 cells. Taken together, these findings provide important new insights into the possible molecular mechanisms of the anti-inflammatory activity of FSB and TFS.

Effects of Poly-Gamma Glutamate Contents Cheonggukjang on Osteoblast Differentiation (폴리감마글루탐산(PGA) 함유량이 증가된 청국장이 조골세포 분화에 미치는 영향)

  • Lee, Ki Ho;Sim, Mi-Ok;Song, Yong Su;Jung, Ho Kyung;Jang, Ji-Hun;Kim, Min-Suk;Kim, Tae Mook;Lee, Hyo Eun;An, Byeong-Kwan;Jung, Won Seok
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.5
    • /
    • pp.664-670
    • /
    • 2016
  • Cheonggukjang (CKJ) is a Korean traditional food made of fermented soybeans. In comparison to normal intake of soybeans, Cheonggukjang has high digestibility with bioactive, antioxidant substances, and thrombolytic enzymes. Recent studies have reported anti-oxidant, anti-cancer, anti-inflammatory, anti-obesity activities as well as inhibitory activities against osteoporosis for CKJ. In this study, we identified the effects of CKJ on osteoblast differentiation by increasing the polyglutamic acid (PGA) content of CKJ. Alkaline phosphatase (ALP) activity and mineralization significantly increased in response to treatment with both natural CKJ (CKJ A) and PGA-increased CKJ (CKJ B). However, CKJ B exhibited higher ALP activity and mineralization than CKJ A. Real-time reverse transcription PCR demonstrated that mRNA expression of osteoblastic-associated genes such as type I collagen, alkaline phosphatase, osteocalcin, and osteopontin in C2C12 cells was significantly up-regulated by CKJ A or B treatment. These results indicate that treatment with CKJ has an anabolic effect on bone by increasing osteoblastic differentiation and ALP activity. Increasing PGA content in CKJ had a greater effect than CKJ A on up-regulation of osteoblastic gene expression in osteoblast cells.