• 제목/요약/키워드: m-quasi-class A(k)

검색결과 12건 처리시간 0.027초

GENERALIZED NONLINEAR MULTIVALUED MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

  • Lee, Byung-Soo;Khan M. Firdosh;Salahuddin Salahuddin
    • 대한수학회논문집
    • /
    • 제21권4호
    • /
    • pp.689-700
    • /
    • 2006
  • In this paper, we introduce a new class of generalized nonlinear multivalued mixed quasi-variational-like inequalities and prove the existence and uniqueness of solutions for the class of generalized nonlinear multivalued mixed quasi-variational-like inequalities in reflexive Banach spaces using Fan-KKM Theorem.

QUASI m-CAYLEY STRONGLY REGULAR GRAPHS

  • Kutnar, Klavdija;Malnic, Aleksander;Martinez, Luis;Marusic, Dragan
    • 대한수학회지
    • /
    • 제50권6호
    • /
    • pp.1199-1211
    • /
    • 2013
  • We introduce a new class of graphs, called quasi $m$-Cayley graphs, having good symmetry properties, in the sense that they admit a group of automorphisms G that fixes a vertex of the graph and acts semiregularly on the other vertices. We determine when these graphs are strongly regular, and this leads us to define a new algebro-combinatorial structure, called quasi-partial difference family, or QPDF for short. We give several infinite families and sporadic examples of QPDFs. We also study several properties of QPDFs and determine, under several conditions, the form of the parameters of QPDFs when the group G is cyclic.

ON GENERALIZED VECTOR QUASI-VARIATIONAL TYPE INEQUALITIES

  • Cho, Y.J.;Salahuddin, Salahuddin;Ahmad, M.K.
    • East Asian mathematical journal
    • /
    • 제26권1호
    • /
    • pp.49-58
    • /
    • 2010
  • In this paper, we consider and study a new class of generalized vector quasi-variational type inequalities and obtain some existence theorems for both under compact and noncompact assumptions in topological vector spaces without using monotonicity. For the noncompact case, we use the concept of escaping sequences.

ON OPERATORS SATISFYING Tm(T|T|2kT)1/(k+1)Tm ≥ Tm|T|2Tm

  • Rashid, Mohammad H.M.
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.661-676
    • /
    • 2017
  • Let T be a bounded linear operator acting on a complex Hilbert space ${\mathfrak{H}}$. In this paper we introduce the class, denoted ${\mathcal{Q}}(A(k),m)$, of operators satisfying $T^{m{\ast}}(T^{\ast}{\mid}T{\mid}^{2k}T)^{1/(k+1)}T^m{\geq}T^{{\ast}m}{\mid}T{\mid}^2T^m$, where m is a positive integer and k is a positive real number and we prove basic structural properties of these operators. Using these results, we prove that if P is the Riesz idempotent for isolated point ${\lambda}$ of the spectrum of $T{\in}{\mathcal{Q}}(A(k),m)$, then P is self-adjoint, and we give a necessary and sufficient condition for $T{\otimes}S$ to be in ${\mathcal{Q}}(A(k),m)$ when T and S are both non-zero operators. Moreover, we characterize the quasinilpotent part $H_0(T-{\lambda})$ of class A(k) operator.

ON THE LEET INVERSIVE SEMIRING CONGRUENCES ON ADDITIVB REGULAR SEMIRINGS

  • SEN M. K.;BHUNIYA A. K.
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제12권4호
    • /
    • pp.253-274
    • /
    • 2005
  • An additive regular Semiring S is left inversive if the Set E+ (S) of all additive idempotents is left regular. The set LC(S) of all left inversive semiring congruences on an additive regular semiring S is a lattice. The relations $\theta$ and k (resp.), induced by tr. and ker (resp.), are congruences on LC(S) and each $\theta$-class p$\theta$ (resp. each k-class pk) is a complete modular sublattice with $p_{min}$ and $p_{max}$ (resp. With $p^{min}$ and $p^{max}$), as the least and greatest elements. $p_{min},\;p_{max},\;p^{min}$ and $p^{max}$, in particular ${\epsilon}_{max}$, the maximum additive idempotent separating congruence has been characterized explicitly. A semiring is quasi-inversive if and only if it is a subdirect product of a left inversive and a right inversive semiring.

  • PDF

Design of Two-Stage Class AB CMOS Buffers: A Systematic Approach

  • Martin, Antonio Lopez;Miguel, Jose Maria Algueta;Acosta, Lucia;Ramirez-Angulo, Jaime;Carvajal, Ramon Gonzalez
    • ETRI Journal
    • /
    • 제33권3호
    • /
    • pp.393-400
    • /
    • 2011
  • A systematic approach for the design of two-stage class AB CMOS unity-gain buffers is proposed. It is based on the inclusion of a class AB operation to class A Miller amplifier topologies in unity-gain negative feedback by a simple technique that does not modify quiescent currents, supply requirements, noise performance, or static power. Three design examples are fabricated in a 0.5 ${\mu}m$ CMOS process. Measurement results show slew rate improvement factors of approximately 100 for the class AB buffers versus their class A counterparts for the same quiescent power consumption (< 200 ${\mu}W$).

GENERALIZED SET-VALUED MIXED NONLINEAR QUASI VARLIATIONAL INEQUALITIES

  • H, M-U
    • Journal of applied mathematics & informatics
    • /
    • 제5권1호
    • /
    • pp.73-90
    • /
    • 1998
  • In this paper we introduce and study a number of new classes of quasi variational inequalities. using essentially the projection technique and its variant forms we prove that the gen-eralized set-valued mixed quasivariational inequalities are equivalent to the fixed point problem and the Wiener-Hopf equations(normal maps). This equivalence enables us to suggest a number of iterative algorithms solving the generalized variational inequalities. As a special case of the generalized set-valued mixed quasi variational in-equalities we obtain a class of quasi variational inequalities studied by Siddiqi Husain and Kazmi [35] but there are several inaccuracies in their formulation of the problem the statement and the proofs of the problem the statement and the proofs of their results. We have removed these inaccuracies. The correct formulation of thir results can be obtained as special cases from our main results.

Quasi-Orthogonal Space-Time Block Codes Designs Based on Jacket Transform

  • Song, Wei;Lee, Moon-Ho;Matalgah, Mustafa M.;Guo, Ying
    • Journal of Communications and Networks
    • /
    • 제12권3호
    • /
    • pp.240-245
    • /
    • 2010
  • Jacket matrices, motivated by the complex Hadamard matrix, have played important roles in signal processing, communications, image compression, cryptography, etc. In this paper, we suggest a novel approach to design a simple class of space-time block codes (STBCs) to reduce its peak-to-average power ratio. The proposed code provides coding gain due to the characteristics of the complex Hadamard matrix, which is a special case of Jacket matrices. Also, it can achieve full rate and full diversity with the simple decoding. Simulations show the good performance of the proposed codes in terms of symbol error rate. For generality, a kind of quasi-orthogonal STBC may be similarly designed with the improved performance.

AN ERROR ANALYSIS FOR A CERTAIN CLASS OF ITERATIVE METHODS

  • Argyros, Ioannis K.
    • Journal of applied mathematics & informatics
    • /
    • 제8권3호
    • /
    • pp.743-753
    • /
    • 2001
  • We provide local convergence results in affine form for inexact Newton-like as well as quasi-Newton iterative methods in a Banach space setting. We use hypotheses on the second or on the first and mth Frechet-derivative (m≥2 an integer) of the operator involved. Our results allow a wider choice of starting points since our radius of convergence can be larger than the corresponding one given in earlier results using hypotheses on the first-Frechet-derivative only. A numerical example is provided to illustrate this fact. Our results apply when the method is, for example, a difference Newton-like or update-Newton method. Furthermore, our results have direct applications to the solution of autonomous differential equations.

EXISTENCE OF BOUNDARY BLOW-UP SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC SYSTEMS

  • Wu, Mingzhu;Yang, Zuodong
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1119-1132
    • /
    • 2009
  • In this paper, we consider the quasilinear elliptic system $\\div(|{\nabla}u|^{p-2}{\nabla}u)=u(a_1u^{m1}+b_1(x)u^m+{\delta}_1v^n),\;\\div(|{\nabla}_v|^{q-2}{\nabla}v)=v(a_2v^{r1}+b_2(x)v^r+{\delta}_2u^s)$, in $\Omega$ where m > $m_1$ > p-2, r > $r_1$ > q-, p, q $\geq$ 2, and ${\Omega}{\subset}R^N$ is a smooth bounded domain. By constructing certain super and subsolutions, we show the existence of positive blow-up solutions and give a global estimate.

  • PDF