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QUASI m-CAYLEY STRONGLY REGULAR GRAPHS

KLAVvDIJA KUTNAR, ALEKSANDER MALNIC, LUIS MARTINEZ,
AND DRAGAN MARUSIC

ABSTRACT. We introduce a new class of graphs, called quasi m-Cayley
graphs, having good symmetry properties, in the sense that they admit
a group of automorphisms G that fixes a vertex of the graph and acts
semiregularly on the other vertices. We determine when these graphs are
strongly regular, and this leads us to define a new algebro-combinatorial
structure, called quasi-partial difference family, or QPDF for short. We
give several infinite families and sporadic examples of QPDFs. We also
study several properties of QPDFs and determine, under several condi-
tions, the form of the parameters of QPDFs when the group G is cyclic.

1. Introduction

A regular graph G of valency k and order v is called strongly reqular (in short
SRG) with parameters (v, k, A\, u) if any two adjacent vertices have A\ common
vertices and any two distinct non-adjacent vertices have p common vertices.
Strongly regular graphs have been extensively studied since their introduction
by Bose [4]; in fact, they are one of the most basic association schemes, the
ones with two classes. SRGs with certain symmetry properties have been an
active topic of research. For example, one can ask when there exist a group of
automorphisms G of the graph acting regularly on its vertices, that is, acting
transitively on the vertex set with trivial vertex stabilizers (in other words,
when a SRG G is a Cayley graph). It is known that this is the case if there
exists a (v, k, A, p)-partial difference set D in G (see for example [8]); this is a
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subset D of G, with |G| = v and |D| = k such that 0 ¢ D, D = —D and every
element in D (respectively, every non-zero element in G — D) can be expressed
in exactly A ways (respectively, in exactly u ways) as a difference of two distinct
elements of D. The (v, k, A, u)-SRG generated by D is the graph with vertex
set G where xy is an edge if y — x € D. If we relax the condition that G acts
transitively but keep the condition that all the stabilizers are trivial, then we are
asking for SRGs G admitting a group of automorphisms G acting semiregularly
on the vertex set of G. This question was first studied by Marusic [12] and by
de Resmini and Jungnickel [13]. In particular, they studied SRGs admitting
a semiregular group of automorphisms with two orbits on the vertex set, and
proved that the existence of such graphs is equivalent to the existence of certain
algebraic structures that de Resmini and Jungnickel termed partial difference
triples and that were specially studied by Leung and Ma [7]. More results
about partial difference triples were given by Malni¢, Marusi¢ and Sparl [9].
Then SRGs admitting semiregular groups of automorphisms with three orbits
were studied by Kutnar, Marusi¢, Miklavi¢ and Sparl [6]. Recently, Martinez
and Araluze [11] studied this question for an arbitrary number of orbits and
for directed SRGs, introduced by Duval in [5]. They translated the problem
into the language of the so-called partial sum families (see also [1, 2]).

In this paper we impose a different kind of symmetry in graphs. We will
consider graphs admitting a group of automorphisms such that there is a unique
vertex x, which we call the vertez at infinity oo, such that the point stabilizer of
x is G and for all other vertices the point stabilizer is trivial. When the number
of orbits on the set of vertices different from the vertex at infinity under G is
m we call it a quasi m-Cayley graph. The properties of these graphs will be
studied in Section 2. We analyze the conditions for a quasi m-Cayley graph to
be strongly regular, that gives rise to a new combinatorial structure that we
call quasi-partial difference family (or QPDF for short). Finally, in Section 3
we consider the case when the group G is cyclic and obtain some structural
properties of QPDFs (Theorem 3.2). Also, we find, in certain particular cases,
the form of the parameters of QPDFs (Theorem 3.4), and present an infinite
family of QPDFs and some sporadic examples of QPDFs.

Let us review at this point some definitions and notations relative to graphs
with semiregular groups of automorphisms. Given integers m > 1 and n > 2,
an automorphism group of a graph is called (m,n)-semiregular if it has m
orbits of length n and no other orbit, and the action is regular on each orbit.
A m-Cayley digraph G is a digraph admitting an (m,n)-semiregular group of
automorphisms G. When G is abelian, we say that G is m-Abelian. If G is
generated by an automorphism p (that is, when G is a cyclic group) and m = 1
(respectively, m = 2) we say that G is n-circulant (respectively, n-bicirculant).
Every m-Cayley digraph G can be represented, following the terminology from
[10], by an m x m array of subsets of G in the following way. Let Up,...,Un—1
be the m orbits of G, and for each 7 let u; € U;. For each i and j, let .S; ;
be defined by S;; = {p € G | u; = p(u;)}. Then the family (S; ;) is called
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the symbol of G relative to (G;ug,...,um—1). Of course, for the graph to be
simple, we have to impose on the family the extra conditions that 0 & .S; ; for
every ¢ and that S;; = —S; ; for every ¢, j.

Lastly, let us present here some notation that will be used later on: Given
a (v, k, A, u)-strongly regular graph, we will define 5 = A — pu, v = k — p and
A = \/B%+4v. Also, if G is a group, A is a subset of G and Z[G] is the
corresponding group ring of G over the integers, then we will use the same
symbol A to denote the sum in Z[G] of the elements of A, and we will denote
by A(=1) the sum of the inverses in G of the elements of A.

2. Quasi m-Cayley graphs
In this section we will give definitions and preliminaries.

Definition 2.1. A group G acts quasi-semiregularly on a set X if there exists
an element oo in X such that the stabilizer G, of the element oo in G is equal
to G, and the stabilizer G, of any element x € X — {00} in G is trivial. The
element oo is called the point at infinity.

Definition 2.2. A graph G is a quasi m-Cayley graph on a group of automor-
phisms G if the group G acts quasi-semiregularly on V(G) with m orbits on
V(G) —{oc}. If G is cyclic, then the quasi m-Cayley graph G is said to be quasi
(m, n)-circulant (and, more specifically, quasi bicirculant when m = 2).

If a graph G of order v is a quasi m-Cayley graph on a group G, then
m = (v —1)/n where n = |G|. Hence, a necessary condition for a graph to be
a quasi m-Cayley graph is that n divides v — 1. Also, if G is a regular quasi
m-Cayley graph, then it is of valency sn for some s > 1.

If G is a quasi m-Cayley graph on a group G, then evidently the complement
of G is also a quasi m-Cayley graph on the same group G.

In this paper we are specially interested in the study of quasi m-Cayley
graphs that are also strongly regular. An important source of examples of such
graphs comes from cyclotomy of finite fields: If F; is a finite field of order
g and ¢ — 1 = ef with e, f positive integers, then the multiplicative group
G = {z° | z € F} formed by the e-th powers of the non-zero elements of F,
acts by multiplication on the additive group of F,. The orbits of the mentioned
action, which determines the cyclotomy on F,, are {0},Co,...,Ce_1, where
C; = 0'G and 0 is a primitive root of F,. In many cases, a partial difference set
D can be found by taking an appropriate union of orbits (see [8]), and in this
case the strongly regular graph generated by D is obviously a quasi m-Cayley
graph, where the point at infinity is the zero element of the field.

Similarly as for m-Cayley graphs we can define the symbol of a quasi m-
Cayley graph in the following way: Let G be a quasi m-Cayley graph on a group
G and let {Uy,...,Upn—1} be the set of m orbits of G on V(G) — {occ}. Let
u; € Uiy © € Ly, let S, 4, j € Ly, be defined by S; ; = {p € G | u; — p(u;)},
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and let Soo C Z,,, be defined by

Soo ={t € Zy,, | U; € N(o0)}.
Then the family (S; ;) together with So, is called the symbol of G relative to

(Gyug, ... Um—1,5), and determines the adjacencies in the graph. We can
assume by renumbering the orbits if necessary that So, = {0,...,s — 1} for
some S.

It is specially interesting the case when | S| = 1. In this situation we have
that S = {0} and we can omit S, in the symbol; also, the group G can be
identified with the neighborhood of the point at infinity.

Examples 2.3. If n = mk + 1 > 2, then the complete graph K,, is a quasi
m-Cayley graph on a cyclic group Zj with the symbol consisting of the sets:

Su] - { Zk if 4 7&]7 %, € Zma and Soo - Zm
Now we will characterize those quasi m-Cayley graphs that are strongly
regular.

Definition 2.4. Let G be a group of order n and m, s positive integers with
s <m. A family {S; ;} of subsets of G with 0 <¢,j <m — 1, i # j such that
0¢S,; and S;; = =8, is said to be a (m,n, s, A, 1) quasi-partial difference
family if

U ns—1 ifi1<s
1 Si il = -
) 315 {n

in other case,

in other case

5 A ifi<s
(2) > 1S4l = {
i=1 H

and if the following identities hold in the group ring Z[G]:

m—1

(3) Z SikSk,j = 0i,;7{0} + BSi; + 1'G,

k=0
where 0; ; is the Kronecker delta, vy =ns — pu, 8 =X — p and
1 in other case.

Observe that, in view of our assumptions about the S; ;, in the previous
definition it is sufficient to establish the identities (3) only for i < j.

Proposition 2.5. The quasi m-Cayley graph defined by the symbol (S; ;)
with Soo = {0,...,8 — 1} is a (mn + 1,ns,\, n)-SRG if and on if it forms
a (m,n, s, \, u) quasi-partial difference family.
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Proof. 1t is easy to prove that, with the notations introduced when the symbol
of a quasi m-Cayley graph was defined, condition (3) in Definition 2.4 means
that if 7,7 < s and z € U; and y € Uj;, then the number of paths x — z — y
of length 2 with z € V(G) — {oc} isns —1if z =y, A —1if x # y and ay is
an edge and g — 1 in other case and that, if ¢ > s or 5 > s and z € U; and
y € Uj, then the number of paths z — z — y of length 2 with z € V(G) — {o0}
isnsif e =y, X if © # y and zy is an edge and p in other case (the reason for
subtracting one in the first situation is that the point at infinity is joined to x
and y). Condition (2) means that the appropriate condition for the number of
xr — z — y paths is satisfied when one of x and y is the point at infinity, and
condition (1) guarantees the regularity of the graph. O

Observe that, in view of the proof of the previous proposition, condition (i)
in Definition 2.4 is redundant and could be omitted; nonetheless, we keep it for
the sake of clarity.

An example of a (3,3,1,0,1) quasi-partial difference family on the cyclic
group C3 that generates the well known Petersen graph is the following one:

So,0 =0, So,1 = {0}, So,2 =10}, S11=0, S12={1,2}, S20=0.

3. (m,n)-Circulant quasi m-Cayley strongly regular graphs

In this section we study a specific case of quasi m-Cayley SRGs for which
the group G is cyclic. A special emphasis is given to the case when s = 1, that
is, when |G| = k, although Theorem 3.2 below holds for arbitrary s. Further
the Payley type QPDFs in the Appendix also have s > 1.

Note that the case when |G| is not a prime will also give examples of quasi
m-Cayley graphs on cyclic groups with s > 1. In particular, if G is a quasi
m-Cayley graph on a cyclic group Cy,, then G is also a quasi mt-Cayley graph
on a cyclic group isomorphic to C,, with s > 1.

Under certain assumptions about the parameters of a QPDF over a cyclic
group, we can obtain information about the structure of the family of the
diagonal blocks {S; ;} of the QPDF. This is done in Theorem 3.2 below. More
specifically, we show that all non-zero elements of the group appear the same
number of times in the family, that is, the family is a 1-balanced incidence
structure. The following lemma will be needed.

Lemma 3.1. Let G be a cyclic group of order n, and let A = deG agg be an
element of the group ring Z|G]. If there exists a set I of r integers in arithmetic
progression with difference d such that x(A) € I for every non-trivial character

x of G, then the following hold:
(i) There exist integers ¢,, such that A ="
the unique subgroup of G of order m.
(ii) If m # 1,n, then ¢y, has the form ¢y = dwy,/m with w, € Z, and
wm # 0 only if m divides ud, where u =l.com.{2,3,...,7r —1}.

m\nchm’ where Uy, denotes



1204 K. KUTNAR, A. MALNIC, L. MARTINEZ, AND D. MARUSIC

(iii) If r = 3 and the coefficients of A can take only the values 0, 1, and 2,
then ¢, = 0 unless m is a divisor of n in the set {1,n,2d,d,d/2}.

Proof. The case r = 3 is shown in [13, Lemma 3.5]. With the same proof you
can also show it for general r, and hence the proof here is omitted. (I

Note that for r = 4, parts (i) and (ii) of Lemma 3.1 reduce to [6, Lemma 5.1].

Theorem 3.2. Let G be a cyclic group. If the family {S;;} is an (m,n)-
circulant (m,n, s, A, ) quasi-partial difference family and if one of the following
three conditions is satisfied:

(i) n is a prime,

(ii) n is coprime to (m!)A,

(iii) m =2 and A does not divide 2n.
Then {S;i}o<i<m—1 covers all the elements of G — {0} the same number of
times. That is, Zﬁgl Sii = o(G — {0}) in the group ring Z[G] for some
natural number o.

Proof. Let U = 3, <,._1 Si;i be the element in Z[G] that correspond with
the multiset formed by the union of the S; ;. Let us consider an arbitrary non-
trivial character x of the group G. Let A, be the square m x m matrix whose
general term is x(.5; ;). It can be easily proved by using (3) that the matrix A,
satisfies A2 =4I + BA,, where I is the identity matrix. Observe that x(U) is
an integer, because it is the trace of A, and the polynomial 22 — Bz — v has
integer roots (in fact, they are the eigenvalues of the DSRG generated by the
QPDF distinct from k, whose difference is A). Thus, if we put U = deG aq9,
with a4, nonnegative integers, we can use Lemma 3.1. Now, if n is a prime, the
result follows easily from the first part of the lemma, if is coprime to (m!)A,
it follows from the second part and, finally, if A does not divide 2n, it follows
from the third part. O

In fact, in all the (m, n)-circulant QPDF's that we have found, the conclusion
of the theorem holds even if none of the conditions (i), (ii) and (iii) is satisfied.
We wonder whether this is always true.

Definition 3.3. We will say that a (m,n, 1, A, 1) quasi-partial difference family
{Si,;} on a cyclic group C,, is uniform if the following three conditions hold:
(i) U:Z)l Si.i = G — {0} (where the union is disjoint).
(ii) all the cardinalities |S; ;| with ¢ > 1 are equal.
(iii) all the cardinalities |S; ;| with ¢,7 > 1 and 7 # j are equal.
We will denote by A the common value of the |S;;| and by B the common
value of the |S; ;| with ¢ # j.

Theorem 3.4. If {S;;} is a (m,n,1, A, u) uniform quasi-partial difference
family on a cyclic group C,, and m is odd, then their parameters are of the
form

(m,d(md + 2),1,d* —md + 3d — 1,d(d + 1))
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with d an integer.

Proof. Let (v, k, A\, 1) be the parameters of the associated SRG G. First observe
that by (2) we have that |So 0| = A and, for every i > 1, |So;| = |Si0| = p-
The matrix whose (7, j)-th entry is |S; ;| is

A pop
uw A B ... B
e_ | .
uw B B ... A

Since by (1) the sum of the elements of the first row of € is k — 1 we obtain

(4) At (m—1p=Fk—1.

Now, we obtain from the fact that G — {0} is the disjoint union of the S; ; that
—m—1

(5) Adt(m-1A=2""""

m

and from the fact that there are m orbits for the action of G on V(G) — oo we
obtain

(6) v—1=mk.
Now, by taking the trivial character in (3) withi= 1,7 =1 and with: =1, =
2, respectively, we have

(7) p? + A2 + (m — 2)B? = v + BA + pk,

(8) p? +2AB + (m — 3)B* = BB + ik,
and substracting (8) from (7) we conclude that
(9) (A= B)*=v+p(A-DB).
Solving in A — B we obtain

B+ A

(10) A-B="=

Since by (1) the sum of the elements in the second row of € is k we have
(11) A+ (m—2)B=+.
We obtain now from (10) and (11) that

+A

(12) (mfl)A:7+(mf2)ﬂT.

From (5) and (12) we have
BEA v—m—1
2 m '

(13) At+y+(m—2)
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Now we conclude from (6) and (13) that

(14) mA—mp =—-2F (m— 2)A.

By solving the system obtained from (4),(6) and (14) we obtain
m(k—1)F (m—1)(m—2)A —2(m—1)

(15) A\ = o |
(16) u:m(kil)i(mf2)A+2
7 v =mk+1.

We have from (14) that g = w, and substituting this expression of 3
in the definition of A and having into account that v =k — u we get

(18) m?k —m?*u = (m — 1)A% F (m — 2)A — 1.

AZ2_1 . . .
—=, and substituting this

By substituting (16) into (18) we obtain k =
expression for k into (15), (16) and (17) we arrive to

A F(m—1)(m—2)A—3m+1

(19) A — :
A%+ (m—2)A-m+1

(20) H= m2 ’

(21) v =A%

We have from (14) that, if the upper sign holds, then A =1 (mod m) and, if
the lower sign holds, then A = —1 (mod m). Let us suppose that the upper
sign holds. Then, by putting A = md+1 and substituting it into (19), (20) and
(21), respectively, we obtain parameters as in the statement of the proposition
(with non-negative d, of course, since A is non-negative).

Let us suppose now that the lower sign holds. Now, by putting A = —md—1
we obtain again parameters as in the statement of the proposition, this time
with non-positive d. (I

Observe that, by following the proof of the previous theorem, we can see
that in fact A = p, and thus all the cardinalities |S;;|, |S;0| and |So ;| are
equal.

Now we will prove that when dm + 1 is a prime power then, under certain
assumptions, uniform QPDF's with parameters as in the theorem exist, but we
will need first some definitions and results relative to cyclotomy of finite fields.
If ¢ =ef + 1 and if we consider the corresponding cyclotomy in F, as defined
in Section 2, then, for given ¢, 7 in {0,...,e — 1}, the cyclotomic number (, j)
is defined to be the number of solutions to the equation

14+ 67t = g%t with 0 < rs< f—1.
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Baumert, Mills and Ward introduced in [3] the concept of uniform cyclotomy.
A cyclotomy is said to be uniform if there exist nonnegative integers A, B and
C such that (0,0) = A, (0,¢) = (¢,0) = (¢,4) = B for every i in {1,...,e — 1}
and C = (i,7) for every i,j with 0 # ¢, and i # j.

Proposition 3.5 ([3, Theorem 4]). Let g be a power of the prime p, and let e
be a divisor of ¢ — 1 such that e > 3. Then the cyclotomic numbers of order e
over GF(q) are uniform if and only if —1 is a power of p modulo e.

Theorem 3.6. Ifdm+1 = p" is a prime power and —1 is a power of p modulo
m, where m is odd, then a uniform

(m,d(md + 2),1,d* — md + 3d — 1,d(d + 1))
QPDF exists.

Proof. Consider the cyclotomy with e = m over the field F g, 1)2. We have,
by Proposition 3.5, that the cyclotomy is uniform. Hence, in the group ring
Z[G], where G is the additive group of the field, the identity CoC{ " =
|Col{0} + ACy + B(C1 + -+ 4+ Ce_1) holds where A = (0,0) and B = (0,1),
and therefore Cy is a partial difference set (we have also used the trivial fact
that in this field Céfl) = Cy is satisfied). The SRG generated by this partial
difference set is obviously a quasi m-Cayley graph, and the QPDF associated to
this graph is clearly uniform: condition (i) in the definition of uniform QPDF
follows from the fact that F(de 12 is the disjoint union of the cyclotomic orbits
Co,...,Cn_1, and conditions (ii) and (iii) hold trivially because the cyclotomy
is uniform. Hence, the parameters of the PQDF are as stated in Theorem 3.4,
and hence they also have the form indicated in the statement of this theorem,
because the first two parameters determine the values of A and pu. (]

When we take parameters with the form described in Theorem 3.4 with
m = 2 (although in that theorem it was assumed that m is odd), we obtain
QPDFs that generates graphs with parameters of Paley type. Of course in this
case, when 2d + 1 is a prime power, uniform QPDFs with these parameters
exists: just observe that Payley graphs are generated by partial difference sets
associated to a cyclotomy of order 2.

By [14] for ¢ € {13,17} Paley graphs P(q) are (up to isomorphism) the
only strongly regular quasi bicirculants of order ¢ and valency % (that is,
the only strongly regular quasi bicirculants of order g apart from the complete
graph K, ), and for ¢ = 21 there is no such graph. Also, using program package
Magma one can check that Paley graph P(25) is the only strongly regular quasi
bicirculant graph of order ¢ = 25 (apart from the complete graph Kos).

By [14] there are 15 non-isomorphic strongly regular graphs with parameters
(25,12,5,6). As mentioned above the Paley graph P(25) is the only quasi
bicirculant among these graphs. However, among the other 14 graphs in this
family there are six more graphs that are quasi m-Cayley graphs on some cyclic
group. In particular, two of the graphs are quasi m-Cayley graphs on a cyclic
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group C,, for each (m,n) € {(4,6),(6,4),(8,3)}, and four of the graphs are
quasi 8-Cayley graphs on a cyclic group C5 (but are neither quasi 4-Cayley
graphs nor 6-Cayley graphs on a cyclic group). The symbols of the graphs that
are distinct from the Paley graph P(25) are listed in the appendix (only the
symbols with respect to a quasi (4, 6)-semiregular automorphism are given for
the two first ones).

All (m, n)-circulant QPDFs with s = 1 that we have found, except one, are
uniform and hence have parameters in the form indicated in Theorem 3.4. The
only exception is a (7,7,1,0,1)-QPDF whose symbol is listed in the Appendix.

4. Appendix

Quasi-partial difference families generating non-isomorphic (25,12, 5,
6)-SRGs:
Family 1:
So,0 = {£2,3}, So1 =1{0,3}, So2 ={0,1,2,3}, So3 =1{0,2},
S11={%2,3}, S12=1{2,4}, S13={0,1,4,5},
Sa2 = {£1}, S2.3 ={0,2,3,5},
Sz ={=£1}
Family 2:
So,0 ={=£2,3}, So,1 ={0,3}, So2={0,1,2,4}, So,3 = {0,5},
S11={£2,3}, S12={0,5}, S1.3=10,1,2,4},
So.9 = {=£1}, Sa3=1{1,2,4,5},
S35 ={£1}
Family 3:
So,1 =1{0,1,2}, So2 = {0}, So,3 = {0}, Soa = {0}, So5 = {0},
So,6 ={0,1}, So,7 ={0,1},
S12 ={1}, S1,3={2}, S1.4={1}, S15={2}, S16=1{0,1}, S17={0,1},
Saa = {=£1}, So3 = {1}, S24 ={2}, S25 ={0,1,2}, Sa6 = {1}, Sa7 = {0},
Sz ={£1}, S34=1{0,1,2}, S35 = {1}, S36 = {0}, S57 = {1},
S5 ={0,2}, Si6={0,2}, Sa7={1,2},
Ss.6 = {1,2}, S5.7 ={0,2},

Se,6 = {£1},
S77={£1}
Family 4:

So,0 = {£1}, So,1 = {0}, So2 = {2}, So3 = {0}, So4 = {0}, So5 ={0,1,2},
So,6 = {1}, So,7 = {0},
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S12={1,2}, S13=1{0,2}, S1,4=1{0,1,2}, S15 ={0}, S1.6 = {2},
S17={1},
So.9 = {=£1}, Sa4={0}, S25 ={2}, S26=1{0,2}, S27 ={0,1},
Szz={*1}, S34={0}, S35 ={2}, S36={0,1}, S37={1,2},
Saa={£1}, Su5=1{0,2}, Ss6 = {0}, Ss7 = {0},
Ss.6 = {0,2}, S5.7 ={0,2},
Se,7 = {O, 1, 2}
Family 5:
So,1 =10,1,2}, So2 = {0}, So,3={0}, So,.4 = {0}, So ={0,2},
So,6 ={0,1}, So.7 = {0},
S12 ={2}, S1,3={1}, S1.4={0}, S15={1,2}, S16 ={1,2}, S1,- = {0},
Saa = {=£1}, So3 ={0}, S24=1{0,1}, S25=1{1,2}, Sa7={1,2},
Sz ={£1}, S34={0,2}, S36={1,2}, S37={1,2},
Saa ={=£1}, Su5=1{0,1}, Ss6 ={0,2},
Ss.6 ={0,2}, Ss5.7 ={0,1},
Ser ={0,2}, S77={%1}
Family 6:
So,0 = {=£1}, So,1 = {0}, So,2 ={0,1}, So,a = {0}, So,5 ={0,1},
So,6 = {0}, So,7 ={0,2},
S11 = {=£1}, S12={1}, S1,3=1{2}, S1,4=1{0,2}, S15={0,1},
S16 =1{1,2},
Sz ={1,2}, S24={0,1}, S26={0,2}, S27=1{0,1},
Ss3 ={%1}, S54={0}, S35 =1{0,2}, S56={0}, S37={1,2},
Sa5 ={0}, Sa6={0,1,2}, Sa7=1{0,1},
Ss5 ={*1}, S56 = {1}, S57 = {1,2},
Se,7 ={0,2}

An sporadic QPDF in the cyclic group C7 with seven orbits:

(v, k, A\, ) = (50,7,0,1),
So1 = {3}, So2 = {3}, So3 = {0}, Soa= {3}, So5= {5}, So,6 = {6},
S11 = {£2}, S13={3}, S1.4=1{3,4}, S15= {3},
Soo = {£3}, So3 = {2}, Sou={1,6}, So5 = {4},
S35 =1{1,3,4}, S36 = {3},
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Si6 = 11,5},
Ss.6 = {4},
Se.s = {£1}
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