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GENERALIZED NONLINEAR MULTIVALUED
MIXED QUASI-VARIATIONAL-LIKE INEQUALITIES

BYUNG-S00 LEE, M. FIRDOSH KHAN, AND SALAHUDDIN

ABSTRACT. In this paper, we introduce a new class of generalized
nonlinear multivalued mixed quasi-variational-like inequalities and
prove the existence and uniqueness of solutions for the class of gen-
eralized nonlinear multivalued mixed quasi-variational-like inequal-
ities in reflexive Banach spaces using Fan-KKM Theorem.

1. Introduction and preliminaries

Variational inequality theory, which constituted a significant exten-
sion of the variational principle, has described a broad spectrum of very
interesting developments involving a link among various fields of mathe-
matics, physics, economics, regional and engineering sciences. The ideas
and techniques are being applied in a variety of diverse areas of sci-
ences and prove to be productive and innovative. Hence variational
inequality theory has become a very effective and powerful tool for
studying a wide range of problems arising in pure and applied sciences
which include work on differential equations, mechanics, contact prob-
lems in elasticity, control problems, general equilibrium problems in eco-
nomics and transportation, and unilateral, obstacle, optimization, etc.
1,2,3,7, 8,611, 12, 17, 18]. Among many kinds of variational inequal-
ities, variational-like inequalities were firstly posed by Parida and Sen
[13] and quasi-variational inequalities were firstly introduced by Aubin
and Ekeland [1]. In fact, the quasi-variational-like inequality, which is an
extension and a generalization of the variational inequalities mentioned
above, is desirable to be considered more deeply.
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On the other hand, recently a new class of monotone nonlinear varia-
tional inequalities was introduced and the existence of solutions to them
was considered in [16].

In this paper, a new class of generalized nonlinear multivalued mixed
quasi-variational-like inequalities are introduced and studied. Also the
solvability of this class of generalized nonlinear multivalued mixed quasi-
variational-like inequalities in reflexive Banach spaces is given. Our
results improve and extend the corresponding results of [6, 10, 14, 15, 16].

Throughout this paper, X is a real Banach space with dual space X*
and K is a nonempty convex closed subset of X. Denote (¢,z) = £(z),
forall £ € X* and z € X. Let S,T : K — 2X" be two multivalued
mappings, N : X* x X* - X* and g : K — X* be mappings. Let a
mapping 7 : K x K — K be affine with respect to the first argument
satisfying n(u,v) = —n(v,u) for all u,v € K. We consider the following
generalized nonlinear multivalued mixed quasi-variational-like inequality
problem (in short, GNMMQVLIP):

For any ¢ € X*, find u € K such that
(1)

sup  ((g(u)+N(z,y))—£,n(v,u))+f(v)—f(u) = Oforallv € K,
zeS(u), yeT (u)
where f: K — RU {+oo} be a proper convex functional.

We note that, if g is a zero mapping then (1) is reduced to the fol-
lowing problem:

For any £ € X*, find u € K such that
(2) sup  (N(z,y) —£,n(v,u)+ f(v) - f(u) = Oforallve K,

z€S(u), yeT (u)
which is called a generalized nonlinear multivalued quasi-variational-like
inequality problem.

We remark that if n(v, u) = v—u, then (2) is collapsed to the following
problem: :

For any £ € X*, find u € K such that
(3) sup (N(z,y) — ¢, v—u)+ f(v) — f(u) > Oforallve K,

z€8(u), yeT ()
which was studied by Cho et al. [4].

We note that, if N(z,y) = z — y, then (2) is equivalent to following
problem:

For any ¢ € X*, find u € K such that

(4) sup <m—y_£7n(v?u)>+f(v)—f(u) > 0 for allveK,
zeS(u), yeT(u)
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which was considered by Fang et al. [6].

If S and T are single-valued mappings, then (2) is equivalent to fol-
lowing problem:

For any ¢ € X™*, find u € K such that

(5) (N(S(u), T(uw)) = £,n(v,u)y + f(v) — f(u) > Oforallve K,

which was studied by Huang et al. [10].

We remark that if n(v,u) = G(v) — G(u), where G : K — K is a
mapping, then (1) is collapsed to the following problem:

For any ¢ € X*, find u € K such that
6) sw ((gu)+ N(wp) ~£ Gw) - Gl)) + F(v) = f) > 0

zeS(u), yeT (u)

forallv e K.

Again, we note that if G is an identity mapping, then G(v) — G(u) =
v — u, therefore (6) is collapsed to the following problem:

For any £ € X*, find u € K such that

(7)
sup ((9(u)+ N(z,y))—4, v—u)+ f(v)—f(u) > Ofor allv € K.
z€S(u), yeT (u)

REMARK 1.1. For a suitable choice of g, N, S, T, n and f, the problem
(1) includes many known variational inequalities as special cases (see
[4, 6, 10, 15, 16] and the references therein).

In the sequel, we recall some definitions needed.

DEFINITION 1.1. A mapping S : K(C X) — 2X" is said to be
n-@-p-monotone with respect to the first argument of a mapping N :
X* x X* — X* if there exist a function ¢ : [0,+00) — [0,+00), a
mapping 1 : K x K — K and a constant p > 1 such that

(8) (N(z,-) = N(y,),n(u,v)) = e(lln(u, )]} lIn(u, v)|”
for all u,v € K, z € S(u) and y € S(v).

DEFINITION 1.2. A mapping T : K(C X) — 2%" is said to be 7-
1-p-monotone with respect to the second argument of a mapping N :
X* x X* — X* if there exist a function ¢ : [0,400) — [0,+00), a
mapping 1 : K x K — K and a constant p > 1 such that
(9) (N(,z) = N(,y),n(u,v)) 2 =o(|In(u, v)|]) In(u, v)|P
for all u,v € K, z € T(u) and y € T(v).
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DEFINITION 1.3. A mapping g : K(C X) — X* is said to be 5-¢-p-
relaxed Lipschitzian if there exist a function ¢ : [0, +00) — [0, +00), a
mapping 17 : K x K — K and a constant p > 1 such that

(10) (9(v) = g(w),n(v,w)) = ¢(lIn(v,w)]) |n(v,w)||? for all u,v € K.

REMARK 1.2. For a suitable choice of N, S, T, g and 5 we will
provide many concepts which are special cases of our concepts (see [4,
6, 9, 10, 14, 16] and the references therein).

DEFINITION 1.4. Let X and Y be topological spaces. A mapping
F: X — 2Y is said to be lower semi-continuous at z € X if for any
y € F(zx) and for any net {z,} in X converging to z, there exists a subset
{zp} C {za} and yg € F(x) for each 3 such that {ys} converging to y.

DEFINITION 1.5 [14]. A mapping g : K — X* is said to be hemi-
continuous if for all u,v,z € K, the mapping ¢t — (g(u + tv),2) is
continuous on [0,1]. A mapping T : K — 2X” is said to be lower hemi-
continuous if for all u,v,z € K, the multivalued mapping

t — (T(u+tv),2)

is lower semi-continuous on [0,1].

2. Main results

Now, we give our main results in this paper.

THEOREM 2.1. Let X be a reflexive Banach space, X* be its dual and
K be a nonempty convex closed subset of X, let g : K — X* be a hemi-
continuous mapping satisfying (10) and also let S and T : K — 2X”
be lower semi-continuous multivalued mappings satisfying (8) and (9),
respectively, where for functions ¢,, ¢ : [0,+00) — [0, +00) satisfying
@(t) + ¢(t) > (t) for all t > 0, ¢ + ¢ — 9 is bounded in [0, 5] for some
6 > 0. In addition, suppose that n(u,v) = —n(v,u) for all u,v € K,
n: K x K — K is affine with respect to the first argument, f : K —
R U {+o00} is a proper convex functional and N : X* x X* — X* is
continuous with respect to the weak* topology of X. Let a multivalued
mapping v — {N(z,w) € X* : z € S(v),w € T(v)} be lower hemi-
continuous. Then for any £ € X*, u € K is a solution of problem (1) if
and only if uw € K is a solution of the following problem:
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Find u € K such that
((9(v) + N(z,w)) = £,n(v,w)) + f(v) — f(w)
(11) = (e(llnCv, W) = »(lln(v, wl) + ¢(lIn(v, w)INln(v, w)|I”
forallve K, z € S(v) and w € T(v).

PROOF. Suppose that the problem (1) holds. Since mappings S, T
and g satisfy (8), (9) and (10), respectively, then for all u,v € K, z €
S(u), z € S(v), y € T(u) and w € T(v), we have

(( ( ) A (z,w)) ~ €, n(v,u)) + f(v) = f(u)
(v >M)>+( (v),n(v,w)) + (N(z,w),n(v,u)) + f(v) — f(u)
= <—€,77(U,U)> — (N(z,w) — N(z,w),n(v,u))
(N(z,y) — N(z,w),n(v,u))
(

+ (N (z,y),n(v,u)) + (9(v) — g(u),n(v,u))
+ (9(uw), (v, w)) + f(v) = f(u)
= (=t,n(v,u)) + (N(z,w) — N(z,w),n(u,v))
(N(z,y) — N(z,w),n(u,v)) + (N(z,y), n(v, u))

(), n(v, w)) + (g(u), n(v,u)) + f(v) — f(u)

> ((g(u) + N(z,9)) — &0(v,u)) + f(v) = £ () + (@(ln(v, w)]))
(v, w)ll) + ¢(lln(v, w)))lin(v, w)lP. '

{(g(v) + N(z,w)) = £,n(v,u)) + f(v) — f(u)

((9(u) + N(z,9)) — £,1(v,u)) + f(v) — f(u)

= (p =¥ + &)(lIn(v, w)DlIn(w, ) |*-

Taking suprema on both sides of the following inequality;
A>B+C,
we have

A= sup A > sup (B+C) = sup B+C.

z€S(u), yeT(u) z€S(u),yeT (u) z€S(u), yeT (u)

Since sup B > Oforallve K from (1), A > C. Hence
z€S(u), yeT (u)

((g(v) + N(z,w)) = £,n(v,u)) + f(v) — f(u)
> (e(ln(v, wl) = Y(ln(v, W) + ¢(ln(v, W) (v, w)”

for all v € K, z € S(v) and w € T'(v), i.e., (11) is true.
Conversely, suppose that (11) holds, without loss of generality, choose
a point v € K such that f(v) < +00 and so f(u) < +00. Letting v, =
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(1 — %)u+%vforn € N, we have v, € K. Sincen: K x K — K is affine
with respect to the first argument and n(u,u) = 0, n(v,,u) = %n(v, u)
for n € N.

For any z € S(u) and y € T(u), since the mapping v — {N(z,w) €
X* : z € Sw),w € T(v)} is lower hemi-continuous, the mapping
v +— g(v) is hemi-continuous and v, — u as n — oo, there exists a
subsequence {vn;} C {vn} and there are z,; € S(vy,), wn; € T(vn;)
such that for any 7 € X
(12) znj - T, wnj - Y, <g(vnj)+N(an’wnj)7T> - (g(u)+N(m,y),7')
as j — oo. It follows from (11) that
(13) <g(vnj) + N(an,wnj) - E,n(vnj,u)) + f(vnj) - f(U) :
(llinvn,, W) = lln(on;, wII) + Slin(vn,, ) Inva,, W)

- (n—l—) (o (Gt ) - v Gcl)

v (il ) ) ool

J

v

since 1(vn;,u) = nljn(v,u).

. . _ 1 1
Since f is convex and v, = (1 — n—]_)u T a0

s = ) = ((1- 5 ) S0+ 10 = )

1 1
>n;f ((1— n—g) u+;l;v> —n; f(u)
= n; f(vn,) = nsf(u)
= nj(f(’l)nj) - f(u))7
from (13) it follows that
(14) (9(0my) + N(zny, wn,) — £, 0(v,0)) + F() — f(1)

> (ni)l (v (nijnn(v,u)u) 4 (nijunw,mn)

# (Il ) ) o)l
It follows from (12) and (14) that

((9(u) + N(z,y) — £, n(v,u)) + f(v) — f(u) > 0O
forallv € K, z € S(u), y € T(u). This completes the proof. |
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REMARK 2.1. Theorem 2.1 improves and extends Theorem 2.1 of
[4, 5, 6, 10, 18].

From Theorem 2.1, we have the following theorem.

COROLLARY 2.2. Let G : K — K be an affine mapping and put
n(v,u) = G(v) — G(u) for u, v € K in Definition 2.1, Definition 2.2,
Definition 2.3 and Theorem 2.1. Then for any £ € X*, u € K is a
solution of the problem (6) if and only if u € K is a solution of the
following problem.

For any { € X*, find u € K such that

(15) {(9(v) + N(z,w)) = £,G(v) = G(w)) + f(v) — f(uv)
> (p(IG(v) - Gw)l) = ¥(IG(v) = G(w)l])
+¢(1G(v) = GW))) IG(v) — G(w) [P

for allv € K, z € S(v) and w € T(v).

From Corollary 2.2, we obtain the main result Theorem 2.1 of Cho
et al. [4] as a corollary.

COROLLARY 2.3 [4]. Let G be an identity mapping, g = 0, ¢ = 0
and N(z,y) =x—vy forz,y € X* in Corollary 2.2. Then for any £ € X*,
u € K is a solution of

sup (N(z,y)—fv—u)+ f(v)— f(u) >0 forallve K
zeS(u),yeT(u)

if and only if u € K is a solution of
(N(z,w) = £,v —u) + f(v) = f(u) 2 (pllv = ull) = (v —ul)lv —u|?
forallve K, z € S(v) and w € T(v).

The following definition and result are essential for our further result.

DEFINITION 2.1 [17]. Let X be a topological vector space. A map-
ping F : X — 2% is called a KKM mapping if for any {x;,x2,...,2,} C
X,

n
co{x1,22,...,2n} C U F(x;).
i=1

FAN-KKM THEOREM 2.4 [5]. Let K be a nonempty subset of a
topological vector space X and F : K — 2X be a KKM-mapping. If
F(z) is closed in X for every z in K and there exists at least a point
zo € K such that F(xzg) is compact, then

N Flz) # 0.

zeK
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THEOREM 2.5. Let X be a real reflexive Banach space, X* be its dual
space and K be a nonempty bounded closed convex subset of X. Let
S,T,g,N,p,%,¢ and n be the same as those in Theorem 2.1. Suppose
that the mapping n and a function ¢ — 1) + ¢ are continuous and f :
K — RU{+oo} is a proper convex lower semi-continuous. Then the
problem (1) has a solution. Moreover if n(u,v) = 0 implies u = v, then
the problem (1) has a unique solution.

PROOF. We first prove the existence of a solution of the problem (1).
Define two multivalued mappings F, H : K — 2K by, for any £ € X*,

Fv)={ue K :((g(u) + N(=z,y)) ~ {,;n(v,u)) + f(v) - f(u) 20
for some z € S(u), y € T(u)}
for allv € K, and
H(w)={u€ K :{(g(v) + N(z,w)) - £,n(v,u)) + f(v) = f(u)
> (¢([ln(v, w)ll) = (lin(v, D) + (lIn(v, w)])) n(v, WP
for all z € S(v), w € T(v)}

for all v € K.

We show that F is a KKM-mapping. Assume that F' is not a KKM-
mapping. Then there exists {vi,vg,...,vn} C K and t; > 0, i =
1,2,...,n, such that

n
1=

Zti = 1, v o= itivi¢0}7’(vi).
i=1 =1

1
For any z € S(u) and w € T'(u), by the definition of F', we have

((9(v) + N(z,w)) — £,n(vi,v)) + f(vi) — f(v) <O
fori=1,2,...,n. It follows that
0 = ((g(v)+N(z,w))—€,n(vﬁv)>
= ((g(v) + N(z,w)) - ¢, n(i_Zl t;vi, v))

: t((9(v) + N(z,w)) — £, n(vi, v)) < ; L(f(0) — F(v))

1

- f(v)—ijl tf(v) < f@)— f(v) = 0,

which is a contradiction. This implies that F' is a KKM-mapping. Now
we prove that F'(v) C H(v) for all v € K. Let u € F(v). Then there
exist z € S(u), y € T(u) such that

((g(u) + N(z,y)) — &,n(v,u)) + f(v) = f(u) = 0.

=
—
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Since the mappings g, S and T satisfy (10), (8) and (9), respectively,
we have

((9(v) + N(z,w)) = £,n(v, u)) + f(v) — f(u)
= (=,n(v,u)) + (N(z,w) = N(z,w),n(u,v))
+ (N(z,y) — N(z,w),n(u, v)) + (N(z,y),n(v, v))
+(9(v) — g(u),n(v,u)) + (g(w), n(v,uw)) + f(v) - f(u)
Z (@(lln(v, ) = b, wll) + ¢(lin(v, ) (v, w)]”
+((9(u) + N(z,y) — £,n(v,u)) + f(v) = f(u)
2 (e(lln(v, w)) = blIn(, w)l) + ¢(lln(v, w)) lInv, w)I”

)
for all v € K, z € S(v) and w € T(v). This implies that v € H(v) and
so H is also a KKM-mapping.
From the assumption, it follows that H(v) is weakly closed for all
v € K. Since K is bounded closed convex, we know that K is weakly

compact and so H(v) is weakly compact in K for all v € K. It follows
from Fan-KKM Theorem that

ﬂ H(v) # 0.
vEK
Hence for any £ € X* there exists a point ug € K such that
((9(v) + N(z,w)) — £,n(v,u0)) + f(v) — f(uo)
= (@(lin(v, uo)ll) — ¥ (lln(v, wo)ll) + ¢lln(v, uo)[])) ln(v, uo)ll?,

for all z € S(v), w € T(v) for all v € K. Thus
((9(uo) — N(z,y)) — £,n(v,u0)) + f(v) — fluo) =0,

for all v € K, for some z € S(v) and for some y € T(v), which shows
that ug is a solution of (1).

Let u; and ug € K be solutions of the problem (1). Since

ki(v) := sup ((g(u1) + N(z,9)) = £,n(v, 1)) + f(v) = fur) 2 0

z€S(uy)
yET(uy)

for all v € K and
ka(v) == sup ((g(u2) + N(z,y)) — £,n(v,u2)) + f(v) — fluz) 20

z€S(uz)
yE€T(ug)

forallve K,
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by the definition of supremum, for any positive number &, there exist
z1 € S(u1) and y; € T'(u1) such that

(16) ki(v)—e < {(g(v1)+N (21, y1)) =€, n(v, u1))+f (v) — f(w1) < k1(v)
and, there exist z2 € S(ug) and y2 € T'(u2) such that
(17) ka2(v)—e < ((g(u2)+N(22,y2)) =€, (v, u2)) + f(v)— fuz) < ka(v)
Setting v = ug in (16) and v = »3 in (17) and adding, we have
k1(u2) + ka(u1) — 2¢
< {g(u1) = g(uz) + N(z1,y1) — N(z2,92), n(u2, u1))
< ky(ug) + ka(ur).
Since ¢ is arbitrary,
(18) (g9(u1) — g(uz) + N(z1,y1) — N(z2,y2), n(u2, u1))
= ki(ug) + ka(u1) > 0.
By (8), (9) and (10), we obtain
(19)
(g(u1) — g(uz) + N(z1,y1) — N(z2,y2), n(uz, u1))
= (g(u1) — g(uz),n(uz, u1)) + (N(z1,51) — N(z2,91), n(uz, u1))
+ (N(z2, 1) ~ N(z2,Y2),n(u2; u1))
= —(g(u1) — g(u2), n(ur, u2)) — (N(z1,91) — N(z2,91),1(u1, u2))
— (N(z2,y1) ~ N(z2,92), n(u1,u2))
< (=@(lIn(uz, u2)ll) — ellnus, u)l)) + Ylin(ur, uz) D)) m(u1, u2)|?
= — ((lIm(ur, u2)|l) + @ (llnus, u2)ll) — Plin(ur, u2)|])) lIn(us, u2)|”.

Due to the inequality ¢(t) + ¢(t) > 9(¢) for all ¢ > 0, it follows from
(8) and (9) that (|n(u1,us2)||? = 0.

By the assumption that n(u,v) = 0 implies v = v, we have u; = us.
This completes the proof. U

REMARK 2.2. Theorem 2.4 also improves and extends Theorem 2.4
of [4, 6, 10, 16].
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