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ON GENERALIZED VECTOR QUASI-VARIATIONAL TYPE
INEQUALITIES

Y. J. Cho, Salahuddin, and M. K. Ahmad

Abstract. In this paper, we consider and study a new class of general-

ized vector quasi-variational type inequalities and obtain some existence

theorems for both under compact and noncompact assumptions in topo-
logical vector spaces without using monotonicity. For the noncompact

case, we use the concept of escaping sequences.

1. Introduction

The vector variational inequality problem was initiated by Giannessi [11] in
finite dimensional Euclidean spaces with applications. Later on many authors
[6, 7, 12, 15, 24] generalized vector variational inequalities in abstract spaces
in several ways. The vector variational-like inequality is one of the generalized
forms of vector variational inequalities [11]. In 1989, Parida et al [19] stud-
ied the existence of solutions for variational-like inequalities in Rn space and
have shown a relationship between variational like inequalities problems and
convex programming as well as with complementarity problems. The vector
variational like inequality and generalized vector variational like inequality are
powerful tools to study non-convex vector optimization problems and convex
and nondifferentiable vector optimization problems respectively, see [10, 18, 21].

In 1973, Bensoussan and Lions [3] introduced the quasi-variational inequality
problem (QVIP). Since then, many generalizations of the QVIP have been
appeared in the literature (see, for example, [1, 2]). In the last decade, because
of applications in the optimization problems, mathematical programming and
equilibrium problems, the QVIP has been intensively studied by many authors
[5, 8, 16, 20, 22, 23, 25].

In this paper, we consider the generalized vector quasivariational type in-
equality problem (GVQVTIP) and obtain some existence theorems for solutions
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of the GVQVTIP in the settings of compact convex subsets of Hausdorff topo-
logical vector spaces and noncompact convex subsets of locally convex Haus-
dorff topological vector spaces. We shall also obtain the existence theorem for
the solutions of the GVQVTIP in the noncompact case by using the concept
of escaping sequences introduced in [4].

Let Y be an ordered Hausdorff topological vector space and C be a closed
convex pointed solid proper cone in Y . Then C defines an ordering on Y by
means of

x ≤ 0 ⇔ x ∈ −C, x < 0⇔ x ∈ −intC,
which can be extended to an arbitrary set P ⊆ Y by setting

P ≤ 0 ⇔ P ⊆ −C, P < 0 ⇔ P ⊆ −intC.

Let A ⊆ Y . Then a point x0 ∈ A is called a vector maximum point of A if
the set

{x1 ∈ A : x0 ≤ x1, x1 6= x0} = ∅,
which is equivalent to the following:

A ∩ (x0 + C) = {x0}
(see Luc [17]). We denote by max(A) the set of all vector maximal points of
A.

Note that, if A is a compact set in Y , then max(A) 6= ∅.

Let 2A denote the family of all subsets of A, intYA the interior of A in Y ,
clYA the closure of A in Y , and co(A) the convex hull of A.

If K is a nonempty subset of a topological vector space X and S, T : K → 2X

are multivalued mappings, then cl(S), co(S), S ∩ T : K → 2X are multivalued
mappings defined by

(clS)(x) = clS(x),
(coS)(x) = coS(x),

(S ∩ T )(x) = S(x) ∩ T (x), ∀x ∈ K,
respectively.

Let X be a Hausdorff topological vector space and Y be an ordered Hausdorff
topological vector space. Let K be a nonempty closed convex subset of X
and T : K → 2L(X,Y ) be a multivalued mapping, where L(X,Y ) denotes the
space of all continuous linear operators from X to Y . Let C : K → 2Y be a
multivalued mapping such that, for each x ∈ K, C(x) is a closed convex pointed
proper and solid cone in Y . Suppose that η : K ×K → X and A : K → 2K

are continuous mappings.

We consider the following problem (GVQVTIP):
Find x∗ ∈ K such that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉 − h(x∗) + h(y) 6⊆ −intY C(x∗), ∀y ∈ A(x∗), (1)
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where
〈T (x∗), η(y, x∗)〉 =

⋃
u∈T (x∗)

〈u, η(y, x∗)〉,

max〈T (x∗), η(y, x∗)〉 = max
u∈T (x∗)

〈u, η(y, x∗)〉,

h : K → Y is continuous and convex functional and 〈u, x〉 denotes the evalua-
tion of a linear operator u from X into Y for all u ∈ T (x∗) and x ∈ X.

Special Cases:
(1) We note that, if Y = R, L(X,Y ) = X∗ (the dual space of X), C(x) =

R+ for all x ∈ K and T is a single-valued mapping, then (1) collapses
to finding x∗ ∈ K such that x∗ ∈ clKA(x∗) and

〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) ≥ 0, ∀y ∈ A(x∗). (2)

(2) If A(x) = K for all x ∈ K and h ∼= 0, then (1.2) reduces to finding
x∗ ∈ K such that

〈T (x∗), η(y, x∗)〉 ≥ 0, ∀y ∈ K, (3)

which is called variational-like inequality problems considered by Parida,
Sahoo and Kumar [19].

(3) If η(y, x∗) = y−x∗ and T is a single valued mapping, then (1.3) reduces
to finding x∗ ∈ K such that

〈T (x∗), y − x∗〉 ≥ 0, ∀y ∈ K, (4)

which is called classical variational inequality problem considered by
Hartman and Stampacchia [13].

(4) If we take h ∼= 0 and A(x) = K for all x ∈ K, then (1.1) is reduced to
the following:

Find x∗ ∈ K such that

max〈T (x∗), η(y, x∗)〉 6⊆ −intY C(x∗), ∀y ∈ K, (5)

which was considered and studied by Chang, Thompson and Yuan [5].

(5) We note that, if T : K → L(X,Y ) is a single valued mapping and
η(y, x) = y−g(x), where g : K → K and h ∼= 0, then (1.1) is equivalent
to the following:

Find x∗ ∈ K such that x∗ ∈ ClKA(x∗) and

〈T (x∗), y − g(x∗)〉 6∈ −intY C(x∗), ∀y ∈ A(x∗), (6)

which was due to Kim and Tan [14].

In the sequel, we shall use the following:

Definition 1. Let T : X → 2Y be a multivalued mapping.
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(i) T is said to be upper semi-continuous on X if, for each x ∈ X and each
open set U in Y containing T (x), there exists an open neighborhood
V of x in X such that T (y) ⊆ U for each y ∈ V .

(ii) The graph of T denoted by G(T ) is defined by

G(T ) = {(x, y) ∈ X × Y : x ∈ X, y ∈ T (x)}.

(iii) The inverse T−1 of T is a multivalued mapping from R(T ) (the range
of T ) to X defined as follows:

x ∈ T−1(y) ⇔ y ∈ T (x).

2. The existence result for compact sets

In this section, we prove an existence theorem for the GVQVTIP in compact
sets by using the following lemma:

Lemma 2.1. [9] Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X. Let A : K → 2K be a mapping such that, for each
x ∈ K, A(x) is nonempty convex and, for each y ∈ K, A−1(y) is open in K.
Let the mapping clA : K → 2K be upper semi-continuous. Suppose that the
mapping P : K → 2K is such that P−1(y) is open in K for each y ∈ K and, for
each x ∈ K, x 6∈ coP (x). Then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗)
and A(x∗) ∩ P (x∗) = ∅.

Theorem 2.2. Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and Y an ordered Hausdorff topological vector space.
Let T : K → 2L(X,Y ), C : K → 2Y , A : K → 2K , η(·, ·) : K × K → X
be mappings and h : K → Y a continuous mapping satisfying the following
assumptions:

(i) for each x ∈ K, C(x) is a closed pointed proper and solid cone,
(ii) η(·, ·) is continuous affine in the first argument and η(x, x) = 0 for all

x ∈ K,
(iii) the mapping W : K → 2Y defined by W (x) = Y \(−intY C(x)) for each

x ∈ K is upper semi-continuous on K,
(iv) h is upper semi-continuous and convex,
(v) max〈T (xλ), η(·, xλ)〉+ h(·)− h(xλ)→ max〈T (x), η(·, x)〉+ h(·)− h(x)

whenever xλ → x ∈ K,
(vi) for each x ∈ K, A(x) is nonempty convex and, for each y ∈ K, A−1(y)

is open in K. Also, clKA : K → 2K is upper semi-continuous.
Then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) 6⊆ −intY C(x∗), ∀y ∈ A(x∗).

Proof. Define a mapping P : K → 2K by

P (x) = {y ∈ K : max〈T (x), η(y, x)〉+ h(y)− h(x) ⊆ −intY C(x)}, ∀x ∈ K.
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We prove that x 6∈ coP (x) for all x ∈ K. Suppose that x0 ∈ coP (x0) for
some x0 ∈ K. This implies that x0 can be expressed as

x0 =
n∑
i=1

λiyi,

n∑
i=1

λi = 1, λi ≥ 0, ∀i = 0, 1, 2, · · · ,

where n is positive integer and y1, y2, . . . , yn ∈ P (x0). Thus we have

max〈T (x0), η(yi, x0)〉+ h(yi)− h(x0) ⊆ −intY C(x0)}, ∀i = 1, 2, · · · , n,

which implies that there exists ui ∈ T (x0) (i = 1, 2, · · · , n) such that

〈ui, η(yi, x0)〉+ h(yi)− h(x0) ∈ −intY C(x0)}, ∀i = 1, 2, · · · , n.

Since C(x0) is a cone, −intY C(x0) is convex and hence
n∑
i=1

λi

[
〈ui, η(yi, x0)〉+ h(yi)− h(x0)

]
∈ −intY C(x0).

Since η(·, ·) is affine in the first argument and h is affine, we have
n∑
i=1

λi〈ui, η(yi, x0)〉+ h(yi)− h(x0)

∈
n∑
i=1

λi〈T (x0), η(yi, x0)〉+
n∑
i=1

λih(yi)− h(x0)

= 〈T (x0), η(
n∑
i=1

λiyi, x0)〉+ h
( n∑
i=1

λiyi

)
− h(x0)

= 〈T (x0), η(x0, x0)〉+ h(x0)− h(x0)
= 0,

which contradicts the fact that C(x0) is a pointed convex cone.
Now, to prove that P−1(y) for each y ∈ K is open in K, it is sufficient

to prove that [P−1(y)]c = K\P−1(y) is closed. In fact, let {xλ} be a net in
K\P−1(y) such that {xλ} converges to a point u ∈ K. Then we have

max〈T (xλ), η(y, xλ)〉+ h(y)− h(xλ) 6⊆ −intY C(xλ).

That is,
max〈T (xλ), η(y, xλ)〉+ h(y)− h(xλ) ⊆ W (xλ).

But, from the assumption (v), we have

max〈T (xλ), η(y, xλ)〉+ h(y)− h(xλ)→ max〈T (u), η(y, x)〉+ h(y)− h(u).

By the upper semi-continuity of W , we have

max〈T (u), η(y, u)〉+ h(y)− h(u) ⊆ W (u).

Therefore, it follows that

max〈T (u), η(y, u)〉+ h(y)− h(u) 6⊆ −intY C(u).
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Hence, from the assumption (v), it follows that the hypothesis of Lemma 2.1
are satisfied, which implies that there exists x∗ ∈ K such that

x∗ ∈ clKA(x∗), A(x∗) ∩ P (x∗) = ∅.
This implies that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) 6⊆ −intY C(x∗), ∀y ∈ A(x∗).

This completes the proof.
�

Corollary 2.3. Let K be a nonempty compact convex subset of a Hausdorff
topological vector space X and Y an ordered Hausdorff topological vector space.
Let T : K → 2L(X,Y ), C : K → 2Y , A : K → 2K , η(·, ·) : K × K → X be
mappings and h ∼= 0, satisfying the following assumptions:

(i) for each x ∈ K, C(x) is a closed pointed proper and solid cone,
(ii) η(·, ·) is continuous affine in the first argument and η(x, x) = 0 for all

x ∈ K,
(iii) the mapping W : K → 2Y defined by W (x) = Y \(−intY C(x)) for each

x ∈ K is upper semi-continuous on K,
(iv) max〈T (xλ), η(·, xλ)〉 → max〈T (x), η(·, x)〉, whenever xλ → x ∈ K,
(vi) for each x ∈ K, A(x) is nonempty convex and for each y ∈ K, A−1(y)

is open in K. Also, clKA : K → 2K is upper semi-continuous.
Then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉 6⊆ −intY C(x∗), ∀y ∈ A(x∗).

Corollary 2.4. In corollary 2.1, if we take Y = R,L(X,Y ) = X∗, C(x) = R+

for all x ∈ K and T a single valued mapping, then there exists x∗ ∈ K such
that x∗ ∈ clKA(x∗) and 〈T (x∗), η(y, x∗)〉 ≥ 0, ∀y ∈ A(x∗), is solvable.

Corollary 2.5. In corollary 2.1, if we take T a single valued mapping and
all other assumptions are satisfied, then there exists x∗ ∈ K such that x∗ ∈
clKA(x∗) and 〈T (x∗), η(y, x∗)〉 /∈ −intY C(x∗), ∀y ∈ A(x∗). This corollary
generalizes theorem 1 in [14].

Corollary 2.6. In corollary 2.3, if we take A(x) = K for all x ∈ K with all
other assumptions, then there exists x∗ ∈ K such that

max〈T (x∗), η(y, x∗)〉 6⊆ −intY C(x∗), ∀y ∈ K.
This corollary is a different version of theorem 2.1 in [5].

3. The existence result for non-compact sets

In this section, we prove the existence results for the GVQVTIP in noncom-
pact sets by using the following lemma, which is a special case of Theorem 2
of [8, 9].
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Lemma 3.1. Let K be a nonempty convex subset of a locally convex Hausdorff
topological vector space X and D be a nonempty compact subset of K. Let
A : K → 2D be a mapping such that, for each x ∈ K, A(x) is nonempty convex
and, for each y ∈ D, A−1(y) is open in K. Also, the mapping clA : K → 2K

be upper semi-continuous. Suppose that the mapping P : K → 2D is such that
P−1(y) is open in K for each y ∈ D and, for each x ∈ K, x 6∈ coP (x). Then
there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and A(x∗) ∩ P (x∗) = ∅.
Theorem 3.2. Let K be a nonempty convex subset of a locally convex Haus-
dorff topological vector space X and D a nonempty compact subset of K. Let
Y be an ordered Hausdorff topological vector space. Let T : K → 2L(X,Y ),
C : K → 2Y , A : K → 2K , η : K ×K → X and h : K → Y be the mappings
satisfying the following assumptions:

(i) for each x ∈ K, C(x) is a closed convex pointed proper and solid cone,
(ii) η is continuous affine in the first argument and η(x, x) = 0 for all

x ∈ K,
(iii) the mapping W : K → 2Y defined by W (x) = Y \(−intY C(x)) for each

x ∈ K is upper semi-continuous on K,
(iv) h is upper semi-continuous and convex,
(v) max〈T (xλ), η(·, xλ)〉+ h(·)− h(xλ)→ max〈T (x), η(·, x)〉+ h(·)− h(x)

whenever xλ → x ∈ K,
(vi) for each x ∈ K, A(x) is nonempty convex and, for each y ∈ K, A−1(y)

is open in K. Also, clKA : K → 2D is upper semi-continuous and
compact valued.

Then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) 6⊆ −intY C(x∗), ∀y ∈ A(x∗).

Proof. Define a mapping P : K → 2D by

P (x) = {y ∈ D : max〈T (x), η(y, x)〉+ h(y)− h(x) ⊆ −intY C(x)}, ∀x ∈ K.
Then, by using the same proof of Theorem 2.2, we have x 6∈ coP (x) for all
x ∈ K and P−1(y) is open for each y ∈ D. Thus all the conditions of Lemma
3.1 are satisfied. Hence, by Lemma 3.1, there exists x∗ ∈ K such that

x∗ ∈ clK A(x∗), A(x∗) ∩ P (x∗) = ∅,
which implies that

max〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) 6⊆ −intY C(x∗)}, ∀y ∈ A(x∗).

This completes the proof. �

Definition 2. ([4, 25]) Let X be a topological vector space and K be a subset

of X such that K =
∞⋃
n=1

Kn, where {Kn}∞n=1 is an increasing sequence of

nonempty compact sets in the sense that Kn ⊆ Kn+1 for all n ∈ N . A sequence
{xn} in K is said to be an escaping sequence from K (relative to {Kn}) if, for
each n = 1, 2, · · · , there exists M > 0 such that xk 6∈ Kn for all k ≥M .
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Theorem 3.3. Let K be a nonempty subset of a Hausdorff topological vector
space X and Y be an ordered Hausdorff topological vector space. Let K =
∞⋃
n=1

Kn, where {Kn} is an increasing sequence of nonempty compact convex

subsets of K. Let T : K → 2L(X,Y ), C : K → 2Y , A : K → 2Y , η : K×K → X
and h : K → Y be the mappings satisfying the following assumptions:

(i) for each x ∈ K, C(x) is a closed convex pointed proper and solid cone,
(ii) η is continuous affine in the first argument and η(x, x) = 0 for all

x ∈ K,
(iii) the mapping W : K → 2Y defined by W (x) = Y \(−intY C(x)) for all

x ∈ K is upper semi-continuous on K,
(iv) h is upper semi-continuous and convex,
(v) max〈T (xλ), η(·, xλ)〉+ h(·)− h(xλ)→ max〈T (x), η(·, x)〉+ h(·)− h(x)

whenever xλ → x ∈ K,
(vi) for each x ∈ K, A(x) is nonempty convex and, for each y ∈ K, A−1(y)

is open in K. Also clKA : K → 2K is upper semicontinuous with
compact values,

(vii) for each sequence {xn}∞n=1 in K with xn ∈ Kn for n = 1, 2, · · · which
is escaping sequence from K (relative to {Kn}∞n=1), there exist m ∈ N
and ym ∈ Km such that

max〈T (xm), η(ym, xm)〉+ h(ym)− h(xm) ⊆ −intY C(xm).

Then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) 6⊆ −intY C(x∗), ∀y ∈ A(x∗).

Proof. Since, for each n ∈ N , Kn is compact and convex set in X, hence
applying theorem 2.2 we have, for all n ∈ N , there exists xn ∈ Kn such that
xn ∈ clKA(xn) and

max〈T (xn), η(z, xn)〉+ h(z)− h(xn) 6⊆ −intY C(xn), ∀z ∈ A(xn). (7)

Suppose that the sequence {xn} is escaping from K relative to {Kn}. By the
assumption (vii), there exist m ∈ N and zm ∈ Km such that

max〈T (xm), η(zm, xm)〉+ h(zm)− h(xm) ⊆ −intY C(xm),

which is a contradiction of (7). Hence {xn} is not an escaping sequence from
K relative to {Kn}. Therefore, there exist r ∈ N and a subsequence {xjn}
of {xn}∞n=1 which must lie entirely in Kr. Since Kr is compact, there exist a
subsequence {xin}in∈Λ of {xjn} in Kr and x∗ ∈ Kr such that xin → x∗, where
in → ∞. Since {Kn} is an increasing sequence, it follows that, for all y ∈ K,
there exists i0 ∈ Λ with i0 > r such that y ∈ Ki0 for all in ∈ Λ and in > i0.
Thus there exist y ∈ Ki0 ⊆ Kin and T (xin) ⊆ T (Kr) such that

max〈T (xin), η(y, xin)〉+ h(y)− h(xin) 6⊆ −intY C(xin),

which implies that

max〈T (xin), η(y, xin)〉+ h(y)− h(xin) ⊆W (xin).
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But, from the assumption (v), we have

max〈T (xin), η(y, xin)〉+h(y)−h(xin)→ max〈T (x∗), η(x, x∗)〉+h(x)−h(x∗).

From the upper semi-continuity of W , we have

max〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) ⊆W (x∗).

That is,
max〈T (x∗), η(y, x∗)〉+ h(y)− h(x∗) 6⊆ −intY C(x∗).

Since clKA : K → 2K is compact valued, the required assertion follows. This
completes the proof. �

Corollary 3.4. In theorem 3.2, if we take h ∼= 0 with all other assumptions,
then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉 6⊆ −intY C(x∗), ∀y ∈ A(x∗).

Corollary 3.5. In theorem 3.3, if we take h ∼= 0 with all other assumptions,
then there exists x∗ ∈ K such that x∗ ∈ clKA(x∗) and

max〈T (x∗), η(y, x∗)〉 6⊆ −intY C(x∗), ∀y ∈ A(x∗).
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