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ON OPERATORS SATISFYING

MoHAMMAD H. M. RASHID

ABSTRACT. Let T be a bounded linear operator acting on a complex
Hilbert space .#. In this paper we introduce the class, denoted Q(A(k),
m), of operators satisfying Tm*(T*|T\2’“T)1/(’“+1)Tm > T*™|T]2T™,
where m is a positive integer and k is a positive real number and we prove
basic structural properties of these operators. Using these results, we
prove that if P is the Riesz idempotent for isolated point A of the spectrum
of T € Q(A(k),m), then P is self-adjoint, and we give a necessary and
sufficient condition for T'® S to be in Q(A(k), m) when T and S are both
non-zero operators. Moreover, we characterize the quasinilpotent part
Ho(T — X) of class A(k) operator.

1. Introduction

Let . be a complex Hilbert space and let .Z(J#) be the algebra of all
bounded linear operators acting on 4. An operator T € £ () has a unique
polar decomposition T' = U|T|, where |T| = (T*T)'/? and U is partial isometry
satisfying ker(U) = ker(T') = ker(|T'|) and ker(U) = ker(T™).

An operator T is said to be positive (denoted by T > 0) if (Tz,z) > 0
for all x €  and also T is said to be strictly positive (denoted by T° >
0) if T is positive and invertible. An operator T' is called p-hyponormal if
|T|?P > |T*|? for every 0 < p < 1 and log-hyponormal if T is invertible and
log(T*T) > log(TT*), T is called paranormal if || T%z|| > |Tz|? for every unit
vector © € ¢, and T is called normaloid if ||T'|| = r(T'), the spectral radius of
T. Following [9, 10], we say that T € £ () belongs to class A if [T?| > |T|?
and class A(k) for k > 0 (abbreviation T' € A(k)) if (T*|T|>*T)Y/*+1) > |T|?,
we note that T is class A if and only if T' is class A(1). According to [2], an
operator T' € L(A) is said to be w-hyponormal if |T| > |T| > |T*|, where
T is the Aluthge transformation 7' = |T|*/2U|T|*/?. As a generalization of w-
hyponormal and class A(k), Ito [10] introduced class wA(s,t) as follows. An
operator T is called class wA(s,t) for s > 0 and ¢ > 0 if [T, o[2/(+0) > |72t
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and |T|%* > |i*;|25/(5+t), where i/t is generalized Aluthge transformation, i.e.,
Ts: = |T|*U|T|*. An operator T' € £ () is called k-paranormal for positive
integer k, if ||TF+1z|| > | Tx|*** for every unit vector z € 2.

Definition 1.1. We say that an operator T' € Z(J7) is of m-quasi class Ay
(abbreviate Q(A(k), m)), if

T*m(T* |T|2kT)1/(k+l)Tm 2 T |T|2Tm,
where m is a positive integers and k > 0. If m = 1, then T is called a quasi-class

A(k) and k =m =1, then Q(A(k), m) coincides with quasi-class A operator.

Example 1.2. Let 7 = @(CQ and define an operator T' on 7 by

n=0
T(--®ro®r_y 6936(()0)6930169---) = QAT 2©Ar 1 ®©Bro® Br1© -,
where A = 1 (% %) and B = (}9). Then T is of m-quasi-class A(k) for each
k> i. In fact, for each k > i,

(T (@ T PET) D - | T2) T, )
- <Am ((ABA)l/(k“) - A2) AMg_y, z,1>
N[ \VEED g
ORI O
for each x € 7.
). Then T € Q(A(k),m) with k > 51082

Let0<a<1andA:a( Topa -

Since ;llooggz —0asa— 0forany k > 0. Then T € Q(A(k), m) for each k > 0

and m is a positive integer.
Since T' > 0 implies R*T' R > 0, we have:
Proposition 1.3. Let T € (). If T € A(k), then T € Q(A(k),m).

N[00 =
SIS
\_/

8

|

—

[SEISIE
[SEISIE

Throughout this paper, we shall denote the spectrum, the point spectrum
and the isolated points of the spectrum of T' € £ () by o(T),0,(T) and
isoo(T), respectively. The range and the kernel of T € Z () will be de-
noted by R(T") and ker(T"), respectively. We shall denote the set of all complex
numbers and the complex conjugate of a complex number X\ by C and X, re-
spectively. The closure of a set S will be denoted by S and we shall henceforth
shorten T'— Al to T' — A.

In Section 2, we prove basic properties of Q(A(k),m) operators and using
these properties, in Section 3, we prove that if P is the Riesz idempotent
for a non-zero isolated point A\ of the spectrum of T € Q(A(k), m), then P
is self-adjoint and R(P) = ker(T — \) = ker(T — A\)* and if A = 0, then
R(P) = Ho(T) = ker(T™*1). This is a complete extension of results proved for



ON OPERATORS SATISFYING T*™(T*|T|?* )t/ (k+V)pm > prm|p2pm 663

quasi-class A operators and quasi-class (A, m) operators in [12, 26], respectively.
In Section 4, we give a necessary and sufficient condition for T"® S to be in
Q(A(k),m) when T and S are both non-zero operators. This gives an analogous
result proved for quasi-class A operators and quasi-class (A, m) operators in [12,
26, respectively.
2. Properties of Q(A(k), m) operators

To prove these properties we need the following lemma.

Lemma 2.1 ([13]). If A, B € L(JF) satisfying A > 0 and ||B|| < 1, then
(B*AB)* > B*A*B  for all « € (0,1].

Lemma 2.2. Let T € Q(A(k),m) and T not have a dense range. Then

T— ( I TQ) on A =RT™ @ ker(T*™),
0 Ty

where Ty = T'|gyzmy is the restriction of T to R(T™), and Ty € A(k) and Tj is
nilpotent of nilpotency m. Moreover, o(T) = o(T1) U {0}.

Proof. Consider the matrix representation of 7" with respect to the decompo-
sition 2 = R(T™) @ ker(T*™);

(T T
(% 1)

Let P be the orthogonal projection onto (7). Then (%1 8) = TP = PTP.
Since T' € Q(A(k), m), we have

P ((T*|T|2kT)1/(k+1) o |T|2) P 2 0.
Then by Lemma 2.1
P(T*|T|2kT)1/(k+1)P — P(T*|T|2kT)1/(k+1)P

< (PT*|T|**TP)™" < (PT*(PT*TP)*TP)™"
- ( (T1*|T1|2kT1)1/(k+1) 0 )

0 0
and )
2p * _ |T1| 0
P|T|PPTTP< 0 0>.
Hence
* k k
( (Ty |11 12 gl)l/( +1) 8 ) > P(T*|T|2kT)1/(k+1)P > P|T>P

_(IT* o
B 0 0 )’
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ie., T1 € A(k). On the other hand, if u = (3!) € S,
(Tyuz, uz) = (T(1 — Pyu, (I — Pyu) = (I — Pyu, T*(I — PYu) =0,
which implies that 75 = 0. It is well known that o(T}) U o(T3) = o(T) UC,

where C is the union of certain of the holes in ¢(T") which happen to be subset
of o(T1) No(T3) and o(T1) No(T3) has no interior points. Therefore, we have

O'(T):O'(Tl)UO’(T3):O'(T1)U{O}. 0

Theorem 2.3. Let T € L () be a QA operator and # be its invariant
subspace. Then the restriction T| 4 of T to A is also Q(A(k), m) operator.

Proof. Let @ be the orthogonal projection onto .#. Put Ty = T|.n. Then
TQ =QTQ and Ty = (QTQ)|.«- Since T is a Q(A(k), m) operator, we have

1/(k+1)

QT* (T*|T1**T) TQ > QT*|T|*TQ.

Since

< QT*Q (QT(T"T)"TQ) ™ QTQ

< QT*Q (QT*(QT*TQ)*TQ) ™ QTQ
_ ( (T2 T 2T VKD )

0 0
and
| |2
QT*|TPPTQ = QT QT TQTQ = ( T ITél no )
we have
|7y | 2Ry )/ (k1)
( (T1 |T1| 311) 8 ) > QT* (T*|T|2kT)1/(k+1)T
|12
> QT*(IT*)TQ = < TY|TPTy O )
0 0

This implies that 77 € Q(A(k), m). .

Theorem 2.4. Let T € Q(A(k),m). Then the following assertions holds:

(a) If A is an invariant subspace of T and T| 4 is an injective normal
operator, then A reduces T.
(b) If (T = N)ax =0 and A # 0, then (T — \)* =0.

Proof. (a) Decompose T into

(S A B n
T_(O B) on H=.MDM
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and let S = T| 4 be an injective normal operator. Let @ be the orthogonal
projection of J# onto .. Since T™ = (5" ) and ker(S) = ker(5*) = {0},
we have

A =R(S) =R(S™) C R(T™).
Then

IS]2 0 _ 2 w2k 1/ (k1)
0 o )= QTR <QTTI™T) Q

< (QrrrPrr)Q) Y

k+112/(k+1)

by Lemma 2.1. Therefore,
w1 2k 1/ (k1) ISI> 0 2
g — (150 _ g,
Since S is normal, we can write (7*|T|?*T)Y/ (k+1) = ('g'f g) . Since

( |S|2(k+1) 0

0 0 ) = QI*[TPFT)Q = Q((I™[TPT)H+1) /1,

we can easily show that C' = 0. Therefore,

2
w12k t/(et1) _  1SI20
(T (5 5

and hence

|S|2(k+1) 0

) = T*(T*T)*T.

This implies that D = (B*|B|** B)"/(*+1) . Therefore,
0< T*m((T*(T*T)kT)l/(kJrl) _ |T|2)Tm

0 Y

Hence A =0 and B is a Q(A(k), m) operator.

(b) Let 4 = span{xz}. Then T|., = X # 0 and T'|_4 is an injective normal
operator. Hence .# reduces T and T = (3 %) on A = M O M+ Then
(T = N)*=0. O

An operator T € Z(A) is called isoloid if every isolated point of o(T) is
an eigenvalue of T'. In [21], Rashid proved every class wF(p,r, q) operators are
isoloid, we extend this result to m-quasi-class A(k) operators.

Lemma 2.5. Let T € Q(A(k),m). Then T is an isoloid.
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Proof. Let T = (T01 %) on J = R(T™) @ ker(T*™), and assume that p €
isoo(T). Then p € isoo(Ty) or p = 0 by Lemma 2.2. If u € isoo(T}), then
w € o,p(T1) because 11 € A(k) and a class A(k) is an isoloid by Theorem 2.10
of [22]. Thus we may assume that p = 0 and u ¢ o(7T1), so dimker(73) > 0.
Therefore, if x € ker(T3), then —T; *Thx @ zker(T). Hence p is an eigenvalue

of T. O

Let Hol(o(T)) be the space of all functions that analytic in an open neigh-
borhoods of ¢(T). Following [7] we say that T € .Z () has the single-valued
extension property (SVEP) at point A € C if for every open neighborhood
Uy of A, the only analytic function f : Uy — 4 which satisfies the equa-
tion (T — w)f(u) = 0 is the constant function f = 0. It is well-known that
T € Z() has SVEP at every point of the resolvent p(T) := C\ o(T"). More-
over, from the identity Theorem for analytic function it easily follows that
T € Z(s) has SVEP at every point of the boundary do(T') of the spectrum.
In particular, T has SVEP at every isolated point of o(7"). In [18, Proposition
1.8], Laursen proved that if T is of finite ascent, then T" has SVEP.

Definition 2.6 ([4]). An operator T is said to have Bishop’s property (B)
at A € C if for every open neighborhood G of A, the function f, € Hol(G)
with (T — A) fn () — 0 uniformly on every compact subset of G implies that
frn(u) = 0 uniformly on every compact subset of G, where Hol(G) means the
space of all analytic functions on G. When T has Bishop’s property (3) at each
A € C, simply say that T has property (5).

Lemma 2.7 ([17]). Let G be open subset of complex plane C and let f, €
Hol(G) be functions such that pfn, () — 0 uniformly on every compact subset
of G, then f,(1) = 0 uniformly on every compact subset of G.

Following [8], we say that an operator T' € £ () belongs to class A(s,t)
for every s > 0 and ¢t > 0 if

(|T*|t|T|23|T*|s)t/(t+s) > |T*|2t.

It is easy to see that T' € A(k) if and only T' € A(k, 1) because if T is a class
A(k), then

(T*|T2FT) Y B+ = (U ||| T 2% | 7 U ) Y D)
= U(IT*|| TPV DU > T and
(T TP ) D > U|TPU™ = [T
Hence, T € A(k,1). If T € A(k, 1), then
771 < (T || T P ey
< (UT*|TP*TU Y+ = g (7|7 2A 7)Y B+ U™ and
(T*T)2*T) Y 4D > g | 72U = |12
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So, T € A(k).

The relations between 1" and its transformation T ; are
(2.1) To|T" = |T1°U|T|"|T|* = |T|°T,
and
(2.2) U|T|"T,, = U|T||T|°UT|" = TU|T|"

for each s > 0 and ¢t > 0.

Theorem 2.8. Let T belong the class A(k) for k > 0. Then T has the property
(8)-

Proof. Since Ty, is %@—hyponormal ([10]) it is suffices to show that T" has
property (/) if and only if TkJ has property ().

Let G be an open neighborhood of A and let f,, € Hol(o(T)) be functions
such that (u — Tk,l) frn() — 0 uniformly on every compact subset of G. By
Equations 2.2, (u—T)(U|T|* fu(w)) = UIT|* (1 — Tk,l)fn(ﬂ) — 0 uniformly on
every compact subset of G. Hence ka frn(u) — 0 uniformly on every compact
subset of G, and Tv;ml having property [ follows by Lemma 2.7.

Suppose that TkJ has property (5). Let G be an open neighborhood of A
and let f, € Hol(o(T)) be functions such that (u—T)f, () — 0 uniformly on
every compact subset of G. Since (Tj.1 — p)|T|* fn (1) = |T|F(T — ) fu (1) = 0
uniformly on every compact subset of G. Hence T f,,(11) = U|T|*|T|fn(pr) — 0
uniformly on every compact subset of G for ka has property (8, so that

wfn() = 0 uniformly on every compact subset of G, and T has property (3)
follows by Lemma 2.7. O

The quasinilpotent part of T'— X is defined as
Ho(T =) = {a e lm (T - X" =0}

In general, ker(T' — \) C Ho(T — \) and Ho(T — M) is not closed. Let FF C C
be closed set. Then the global spectral subspace is defined by

xr(F) ={x € | Janalytic f(z) : (T —\)f(z) =2xzonC\ F}.
Theorem 2.9. Let T € A(k). Then Ho(T — ) =ker(T — \) for X € C.

Proof. Let F' C C be closed set. It is known that Ho(T — A) = xr({A\}) by
Theorem 2.20 of [1]. As T has Bishop’s property by Theorem 2.8, xr(F) is
closed and o(T'|,, (r)) C F by Proposition 1.2.19 of [19]. Hence Ho(T — X)
is closed and T'|g,(7—») is class Ay by Theorem 2.3. If o(T'| g, (r—x)) C {A},
T'|y(7—») is normal by Theorem 2.4. If o(T'| o (r—»)) = 0, then Ho(T — \) =
{0} and ker(T' — \) = {0} . If o(T'|go(r—»x)) = {A}, then T'|g r—x) = A and
Hy(T — \) =ker(T — \). O

Rashid [20] proved that quasi-class (A, k) has Bishop’s property, in the fol-
lowing we prove analogous result for m-quasi-class A(k) operators.
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Lemma 2.10. Let T € Q(A(k),m). Then T has Bishop’s property (3).

Proof. Let f,(z) be analytic on G. Let (T — z)f,(z) — 0 uniformly on each
compact subset of G. Then, using the representation of Lemma 2.2 we have

( Th—z 1h ) ( fn1(2) ) _ ( (Th — 2) fr1(2) + Tafr2(2) ) 0
0 T3 -z fn2(z) N (T3 - Z)fn?(z) '
Since T3 is nilpotent, T3 has Bishop’s property (3). Hence fn2(z) — 0 uni-
formly on every compact subset of G. Then (T} — 2) f,1(2z) — 0. Since T} is of
class A(k), Ty has Bishop’s property () by Theorem 2.8. Hence fp1(z) — 0
uniformly on every compact subset of G. Thus T has Bishop’s property (8). O

Lemma 2.11. Let T € L(H) be a class A(k). Let A\ € C. Assume that
o(T)={\}. Then T = \I.

Proof. We consider two cases:
Case (I) (A =10): Since T is a class A(k), T is normaloid. Therefore T' = 0.
Case (IT) (A # 0): Here T is invertible, and since T is a class Ay, we see that
T~ is also belongs class A(k). Therefore T~! is normaloid. On the other hand,
o(T71) = {5}, so T[T~ = |Al|x]| = 1. It follows that T is convexoid, so
W(T) = {\}. Therefore T = \. O

Lemma 2.12. Let T € Z() be a Q(A(k), m) operator and o(T) = {\}.
Then T =X if X#0, and T™ =0 if A= 0.

Proof. If the range of T is dense, then T is a class A(k). Hence T = \ by
Lemma 2.11. If the range of T is not dense, then

T = I Tp on J =R(T™) @ ker(T*™),
0 T3

where Ty = T|W is the restriction of T' to R(T™), and Th € Q(A(k),m),
Ti" =0and o(T) = o(T1) U{0} by Lemma 2.2. Hence 77 = 0 by Lemma 2.11.

Thus o
Tm+1_ 0 T2 o O TQTé,,n _0
“\ 0 T3 o0 Tttt )T

O

3. Riesz idempotent for an isolated point of the spectrum

Let T € Z() and p € isoo(T). Then there exists a positive number
r > 0 such that {\ € C: |\ —pu| <r}nNo(T) = {un}. Let v be the boundary of
{AeC:|A—pl <r}.Then P := 5= fv()\fT)d)\ is called the Riesz idempotent
of T for p. Then it is well known that

P?=P, PT=TP, o(T|pp)={n} and R(P) D ker(T — p).

In general, it is well known that the Riesz idempotent P is not an orthogonal
projection and necessary and sufficient condition for P to be orthogonal is
that P is self-adjoint [6]. For a hyponormal operator T', Stampfli [24] have
shown that the Riesz idempotent for an isolated point of the spectrum of T
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is self-adjoint. Uchiyama and Tanahashi [27] proved this property for class A.
Recently, Jeon and Kim [12] showed that this property also holds for quasi-
class A. In this section we extend these result to class A(k) operators and
Q(A(k), m) operators.

Theorem 3.1. Let T € L () be a class A(k) operator and X be a non-zero
isolated point of o(T'). Then the Riesz idempotent satisfies that

R(P) =ker(T — N\I) = ker(T — A\I)*.
In particular T is self-adjoint.

Proof. Since class Ay, operators are isoloid by Lemma 2.5. Then A is an isolated
point of (7). Let y be the boundary of a closed disc Dy = {u € C: |p — A| < r}
for which 0 ¢ D, such that yNo(T) = {A}. Then the range of Riesz idem-
potent P = - ,Y(T — M)71d) is an invariant closed subspace of T and
o(Tlpp)) = {A}-

If A =0, then o(T|(p)) = {0} . Since T'|y(py is class A(k) by Theorem 2.3,
T|(py = 0 by Lemma 2.11. Therefore, 0 is an eigenvalue of T'.

If A # 0, then T|gpy is an invertible class A(k) operator and hence
(Tls(py)~" is also class A(k). We see that ||T|g(p)|| = [A and ||(T|sp)) || =
|—/1\‘. Let z € R(P) be arbitrary vector. Then

[|z]| < H(T|%(P))71H HT|9?:(P)$H = ﬁ HT|%(P)S€H < ﬁlkl ]| = [z -
This implies that +7|g(p)y is unitary with its spectrum o (37T |gp)) = {1}.
Hence T'|g(py = M and ) is an eigenvalue of T'. Therefore, R(P) = ker(T'—AI).
Since ker(T' — M) C ker(T — AI)* by Theorem 2.4, it suffices to show that
ker(T — AI)* C ker(T — MI). Since ker(T' — AI) is a reducing subspace of T
by Theorem 2.4 and the restriction of a class A(k) to its reducing subspace
is also class A(k) operator, we see that T is of the form T' = T' @ Al on
H = ker(T — \I) @ ker(T — M)+, where T" is a class A(k) operator with
ker(T" — M) = {0}. Since A € o(T) = o(T") U {A} is isolated, the only two
cases occur. One is A ¢ o(T") and the other is that A is an isolated point of
o(T"). The latter case, however, does not occur otherwise we have A € o,(T”)
and this contradicts the fact that ker(7”—AI) = {0} . ker(T'—AI) = ker(T'—\I)*
is immediate from the injectivity of 7" — AI as an operator on ker(T — \I)*.

Next, we show that P is self-adjoint. Since R(P) = ker(T — AI) = ker(T —
A)*, we have (T — 2I)*)™'P = (2 — \)~1P. Hence

1
P*P=—— [(T—2D)*)""'Pdz
1T ~
1 — 7 -
= —— (Z*)\)ilpdz
20w ~

1 1
= — dz | P
(QiﬁLzA Z)
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= PP~".
Therefore, the proof is achieved. O

Example 3.2. There exists a class A(k) operator T such that 0 is an isolated
point of o(T), ker(T') # ker(T*) and the Riesz idempotent P with respect

11
to 0 is not self-adjoint. To see this, let 0 < @ < 1 and A = « (j i) in
2 2

Example 1.2. Then T € A(k) with k > gllg’ggj and 0 is an isolated point of

o(T). Also ker(T') # ker(T™*) and the Riesz idempotent P with respect to 0 is
not self-adjoint.

Theorem 3.3. Let T € Q(A(k),m). Then

| kex(T—N), if N#0;
Ho(T' = A) = { ker(T™+), if A= 0.

Moreover, if 0 # A, then Ho(T — X) = ker(T — \) C ker(T — \)*.

Proof. Since T has Bishop’s property () by Lemma 2.10 and Ho(T — \) =
x7({A}) by Theorem 2.20 of [1], Ho(T — A) is closed and o(T|g,(r—»)) C {\}
by Proposition 1.2.19 of [19]. Let S = T'|g,(r—»). Then S is a Q(A(k),m)
operator by Theorem 2.3. Hence, we divide into the cases:

Case I If 0(S) = o(T | gy (r—x)) = 0, then Ho(T — X) = {0}, and so ker(T —
A) ={0}.

Case II. If o(S) = {A} and A # 0, then S = A\ by Lemma 2.12, and H(T —
A) =ker(S — \) C ker(T — ).

Case IIL. If o(S) = {0}, then S™*! = 0 by Lemma 2.12, and Ho(T) =
ker(S™*1) C ker(T™*1).

Moreover, let A # 0. In this case, S = A. Hence S is normal and invertible,
so Ho(T — \) reduces T' by Theorem 2.4. Thus Ho(T — \) = ker(T — \) C
(T — N)*. O

Theorem 3.4. Let T € Q(A(k),m). If 0 # X € isoo(T) and P is the Riesz
idempotent for X\, then P is self-adjoint and

R(P) =ker(T — \) = ker(T — \)™.
Moreover, if A\ =0, then R(P) = Ho(T) = ker(T™T1).

Proof. If T has a dense range, then T is a class A(k) operator, so the result
follows from Theorem 3.1. Therefore we may assume that R(7™) # . Let

T= (" %) on 7 = R(T™) @ ker(T*™), where T} is a class A(k), T3 = 0 and
o(T) =o(Ty)U{0}. If 0 # X\ € isoo(T), then A € isoo(T1) because o(T) =
o(T1)U{0}. Let v be the boundary of a closed disc Dy = {p € C: |u— A <r}

for which 0 ¢ D,, such that yNo(T) = {A}. Then

-1

1 ‘U,*Tl *TQ
P=— d
2mi 7( 0 ;LTQ,) H
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_ ! (h=T1)"" (p=T1) "To(p—T3)""
= — -1 d,u
2mi J, 0 (n— Ts)
Let P, = 2m (u — T1)"Ydu be the Riesz idempotent of Ty for p. Since T is
a class A(k), 1t follows from Theorem 3.1 that P; is self-adjoint and
R(P1) = ker(Ty — X) = ker(Ty — \)*.

We prove that

1
X = T o (u — T5) " tdu = 0.
QWZA(M 1) To(p —T3) dp
Since ) .
1 T3 T =
(=T "=+ S+ S+
woopE o

we see that
T3
= o (M Ty)~ 1T2—du+—/ pw—T1)" 1T2
—X0+X1+ +Xm—1-

Since + =y L0 (u)n we have
i 2un=0 X X )

1 1 w—A
)T —d — )~ 'T .
27”/7(# 1) To—dp + 27”/7(# 1) Ta—5— +
1 1 1 )
= 1P = (T = NPT + 5 (T = APPTs —

We prove that
P11, =0.

Let y = Pix for © € R(T). Then y € ker(Ty — A) = ker(Ty — A)*. Therefore,
from Theorem 2.4 we have

(3)-rn(8)-mor (1) (")

Thus Tyy = Ty Pz = 0 for # € R(T). This implies that P,Ty = 0 be-

cause P is self—ad301nt Hence Xg = 0. On the other hand, since # =
%—w—i—?’(“)\%?— -, we have
1 T
X1 = 2 (M Tl) 1T2—3d,u
i Jy 1
1 2 3
= pPlTQTg, - E(Tl — NP ToT5 + a — P ToT3 —
= 0.
Similarly we have Xo = X3 =---= X,,,_1 =0, and X = 0. Hence

(3.1) P:(Pgl 8)
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is self-adjoint as well as P;. Now we claim that R(P) = ker(T' — \). We see
from Equation (3.1) that

R(P) =R(P1) & {0} =ker(Th — \) & {0} = ker(Th — \)" @ {0}.
So, if x € R(P), then x = (), where z1 € ker(Ty — A). Therefore,

o T1 —A 7T2 T o 0
o= (0 ) (6)=(6)
Thus R(P) C ker(T — \). Hence, since R(P) 2 ker(T' — \), we have that
R(P) = ker(T — ).

To end the proof, we must show that ker(T' — \)* C ker(T — \). Let =
(22) € ker(T — A\)*. Then

e (3) = (T @l ) ()
- < TQxEinl— (_Tj)ixAl)*xQ ) - 8 >
Therefore, 21 € ker(Ty — \)* = ker(Ty — A). Then (T'— N) (§)
that (T -2 (5) = ("0 ) = (9.

Thus we have that 752y = 0. This implies that (75 — A\)*z2 =0 and 22 =0
because T3 is nilpotent. Therefore,

= (9) implies

x = ( %1 ) € ker(Ty — \) & {0} = R(P) = ker(T — \).
The proof of the case A = 0 is straightforward from Theorem 3.3. So, the proof
is achieved. (|

4. Tensor product

Let 27 and # denote the Hilbert spaces. For given non-zero operators
TeZL(AH)and S € L (X)), T®S denotes the tensor product on the product
space @ . . The normaloid property is invariant under tensor products [23].
T ® S is normal if and only if 7" and S are normal [14, 25]. There exist
paranormal operators 7" and S such that T'® S is not paranormal [3]. In [15],
I. H. Kim showed that for non-zero T' € .Z() and S € L(#), T ® S is
log-hyponormal if and only if 7" and S are log-hyponormal. This result was
extended to p-quasi hyponormal operators, class A operators, quasi class A
and quasi class (A, k) operators in [15], [11], [12] and [16], respectively. In this
section, we prove an analogous result for Q(A(k), m) operators.

Remark 4.1. Let T € LB and S € Z() be non-zero operators, then we
have

i) TN (T®S)=T"T®S5*S,

(i) |T® S|"=T|"®|S|" for any positive real t.
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Lemma 4.2 ([25]). Let Ty, Ty € L(), S1,5 € L(H") be non-negative op-
erators. If Th and Sy are non-zero, then the following assertions are equivalent:

(a) T1 ®S1 < Th ® So;
(b) there exists ¢ > 0 such that Ty < ¢TIy and S1 < c18,.

Lemma 4.3 (Holder-McCarthy Inequality). Let T > 0. Then the following
assertions hold.

() (T7z,z) > (T, z)" x> forr >1 and x € A.
(i) (T72,2) < (Tx,2)" ||2)|** for r €[0,1] and x € H.

Theorem 4.4. Suppose that T € L () and S € L (A") are non-zero opera-
tors. Then T ® S is a class A(k) operator if and only T and S are class A(k)
operators.

Proof. Assume that T and S are class A(k) operators. Then
(T ® 8)"|T @ ST @ 5)) /"
= (1% @ ST @ |SPF) (T © $) "
((T*|T|2kT) ® (S*|S|2k8’))1/(k+1)
— (T*|TPRTYY D) g (575|128 )1/ (D)
> |TP®|S)? =TS

which implies that T ® S is a class A(k) operator.

Conversely, assume that T'® S is a class A(k). We aim to show that 7" and
S are class A(k) operators. Without loss of generality, it is enough to show
that T is a class A(k) operator. Since T'® S is a class A(k) operator, we obtain

(T*|T|2kT)1/(k+1) ® (S*|S|2ks)1/(k+1) > |T|2 ® |S|2

Hence by Lemma 4.2, there exists a positive real number ¢ for which
|T|2 < C(T*|T|2kT)1/(k+1) and |S|2 < Cfl(S*|S|2kS)1/(k+1).

Consequently, for every x € 7 and y € J# and by Holder McCarthy Inequality,
we have
IT|* = Sup (IT |z, )
z||=1
< sup <c(T*|T|2kT)1/(k+1)x,x>

llzll=1

< c sup <T*|T|2kT:L',:L'>1/(k+1)
llzll=1

< ¢ sup H|T|kT:1:||2/(k+1)
llzll=1

= el = el P <o
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and

1517 = sup {|S]%y,y)
lyll=1

< sup (e7H(S7ISPES) Yy, y )

llyll=1

< c_1|\S1||lp <S*|S|2k5y,y
yl|=1

<c ™t sup [|I5]*Sy]|
Iuli=1

=cH|IS1"S]]
! HSk+1H2/(k+1)

>1/(k+1)
2/(k+1)

2/(k+1)

<c ISP
Thus, ¢ = 1, and so T is a class A(k) operator. O

Theorem 4.5. Let T,S € Z() be non-zero operators. Then T ® S €
Q(A(k),m) if and only if one of the following holds:

(i) T € Q(A(k),m) and S € Q(A(k),m).

(i) T+ =0 or S™H = 0.

Proof. By simple calculation we have T ® S € Q(A(k), m) if and only if
Tesy™ ((Tes)TesPTes) "™ —resp)Tas)m >0
o T (T*|T PPV D _ T RYT™ g 557 (5% |52k 5) 1/ (D) grm
+ T TPT™ @ §*((S*| S| 5)/+H) — |§12) 5™ > 0.

Thus the sufficiency is easily proved. Conversely, suppose that T'® S €
Q(A(k), m). Then for x € 5 and y € # we have

(4.1)
<T*m((T*|T|2kT)1/(k+1) _ |T|2)Tml',l'> <S*m(S*|S|2kS)1/(k+1)Smy,y>
(T TPT ", ) (S (SIS D — |S[2)S ™y, ) > 0.

It suffices to show that if the statement (ii) does not hold, the statement (i)
holds. Thus, assume to the contrary that neither of 7! and S™*! is the zero
operator, and T is not in Q(A(k), m). Then there exists xg € # such that

<T*’"((T*|T|2’“T)1/(k+1) T T, :c0> =a<0 and
(T™|T|PT™wo,20) := B> 0.
From (4.1) we have

(42)  (a+B)(STS SIS ENS Ty ) = 5SS S y,y).
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Thus S € Q(A(k), m). By Holder McCarthy Inequality, we have
(57 (S¥ SR )RV gy 1) = ((5%]8 ]2 5) /D gy, Sy )
1/(k+1
< (|, gty | gy PO
<[5y PO [ sy Y
2 2/(k+1
= ISyl [lsemey [

and

<S*m|S|2Smy, y> — <Sm+1y’ Sm+1y> _ HSm-l-ly
Therefore, we have
(4.3) (ac+ B) [ S™y|[ T | skm iy /ETY > g|smeay .

On the other hand, since S € Q(A(k), m), from Lemma 2.2 we have a decom-
position of S as the following:

I

S = ( S5 > on I =R(S™) @ ker(S™"),
0 S

where S is a class A(k) operator on R(S™) and S3 is a nilpotent with nilpo-
tency m. By (4.3) we have

(4.4)
(a+ B) [|Sme ] 1 || sktmtie| Y5 > g lsmtie|® for all € € R(S™).

Since S; is a class A(k), S7 is normaloid, and taking supremum on both sides
of the inequality (4.4), we have

(a+ B[S > gl > Y.

This inequality forces that S; = 0. Hence S™"12z = 0 because S™1 = §;5™
for all y € J#. This is a contradiction to that S™*! is not a zero operator.
Hence T must be in Q(A(k), m) operators. In a similar manner, we can prove
that S is also a quasi-class Q(A(k), m) operator. Therefore, the proof of the
theorem is finished. O
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