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Quasi-Orthogonal Space-Time Block Codes Designs Based
on Jacket Transform

Wei Song, Moon Ho Lee, Mustafa M. Matalgah, and Ying Guo

Abstract: Jacket matrices', motivated by the complex Hadamard
matrix, have played important roles in signal processing, commu-
nications, image compression, cryptography, etc. In this paper, we
suggest a novel approach to design a simple class of space-time
block codes (STBCs) to reduce its peak-to-average power ratio.
The proposed code provides coding gain due to the characteris-
tics of the complex Hadamard matrix, which is a special case of
Jacket matrices, Also, it can achieve full rate and full diversity with
the simple decoding, Simulations show the good performance of the
proposed codes in terms of symbol error rate. For generality, a kind
of quasi-orthogonal STBC may be similarly designed with the im-
proved performance.

Index Terms: Discrete Fourier transform (DFT) matrix, full rate,
Hadamard transform, Jacket matrix, muitiple-input multiple-
output (MIMO) system, quasi-orthogonal space-time block code
(STBC).

L. INTRODUCTION

The multiple-input and multiple-output (MIMO) communica-
tion systems provide more potential capacity gains than that of
the single-antenna wireless communication system [1]. To ap-
proach the capacity of the MIMO system, many types of space-
time block codes (STBCs) have been intensively studied [1]-
[5]. Since the orthogonal STBCs have suggested a linear de-
coding complexity, several elegant designs of STBCSs have been
reported by using group and representation theory of groups [6],
[7]. To absorb STBCs from orthogonal designs as a special case,
Hassibi and Hochwald [8] introduced the linear codes in space
and time called linear dispersion codes. To achieve good perfor-
mance with full rate and full diversity, the STBC designed using
unitary matrices have been investigated in [9]-{12]. However,
in all previous STBC cases the patterns of the codes design are
fixed.

It is known that orthogonal space-time codes have linear de-
coding complexity with full diversity. However, Tarokh et al.
have already proved that there is not a full-rate complex or-
thogonal design for four antennas [4]. To solve this problem,
Jafarkhani suggested a quasi-orthogonal design for STBC [5],
but pairs of the transmitted symbols need be decoded separately.
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Subsequently, Jafarkhani and Khan presented the full rate di-
agonal block code with diversity two [1], which is a full-rate
and full diversity diagonal block code based on coordinate in-
terleaved orthogonal design (CIOD) in [13] and [14]. Compared
with other STBCs, the diagonal block codes have the high peak-
to-average power ratio (PAPR). Unfortunately, it is undesirable
for practical application because of the usage of zero-element in
transmission matrix.

Currently, Jacket matrix, which includes Hadamard matrix,
discrete Fourier transform (DFT) matrix, etc., are being in-
tensely investigated [15]-[17]. Since a Jacket matrix can be de-
composed into multiplication of a Hadamard matrix and a sparse
matrix, the Fourier matrix Fu, which is yielded from the DFT
with the form X (n) = Zﬁ;g z(m)W™™, can be expressed as

6]

where W = ¢~*¥ for 0 < n,m < N — 1, Cy is a Hadamard
matrix, Sy is a sparse diagonal block matrix, and Py is a per-
mutation matrix. ; '
Using the matrix Py, one may design various patterns for the
quasi-orthogonal STBC, which can be generally described as

Q= QPn. @

Since |det Py| = 1, the revision with multiplication of Py
does not change the performance of the yielded codes.

To enrich the patterns of the families of STBCs, we sug-
gest an elegant model for the designation of the STBC with
transmission matrices being pairwise-row-orthogonal and mod-
ulating block diagonal STBC. In fact, the proposed STBCs are
not strict orthogonal STBC, so we call them quasi-orthogonal
STBC. This kind of quasi-orthogonal STBCs can be linearly de-
coded and reduce PAPR perfectly. It also has an advantage of
being designed fast via Jacket transforms.

This paper is outlined as follows. In Section I, we describe
the system model, which is the foundation of the present ap-
proaches for constructing STBC. In Section II1, we state the en-
coding approaches in detail. In Section 1V, we suggest the de-
coding analysis for the designed codes. In Section V, simula-
tions results are presented by comparing itself with the previous
codes. In Section VI, the extension of constructions are given
can be generated with efficiency. Finally, conclusions are drawn
in Section VIL

Fn = (W™™) =CnSNPn

II. SYSTEM MODEL

Consider a multiple antennas communication system with M
transmitting and N receiving antennas. Let H = [hy, ko, - - -,
has]T be the channel vector over the M channel uses. The em-
ployed channel in this paper is assumed to be a quasi-static
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Rayleigh flat fading channel. Let the signal constellation be
V= {W,V, -, V.}, and Q(V) be the transmitted code ma-
trix, where V' € V. Then, the received signal vector r is written
as

r=E,QH+n 3)

where H is the M x N channel matrix of Rayleigh-fading co-
efficients, E; is the average energy at each receive antenna, and
n is the noise modelled as independent samples of a zero-mean
complex Gaussian random variable with the variance Ny/2 per
dimension.

For the communication system presented in (3), the pairwise
block error probability under the maximum-likelihood (ML) de-
coder should satisfy the following constraints [11],

M > -N
P.<|]Ja+ 4]\2)03,1)} 4

m=1

where oy, denotes the mth singular values of the matrix (Q —
Q’). At high SNR, the above inequality becomes

B, \ MY 1
P. < s . 3
(4No> [dei(Q — 0¥ ®)

Define a diversity product A [12] (coding gain [13]), i.e.,

1/2

A= min |det [(Q - Q)7 (Q- O 6
min [det [(Q— @) (2 - Q)] 6)
where (-)# denotes the Hermitian, and Q and Q' are the code
and error-code words matrix, respectively. To design a ‘good’
STBC, one needs that A in (6) reaches the maximum.

III. ENCODING APPROACHES

Following the encoding criteria, we propose a novel approach
for the designation of the STBC for MIMO communication sys-
tem in this section.

Firstly, we divide randomly the signal constellation V =
{Vi,Vo,---, Vi } into K subset {A;, As,---, Ax}. For exam-
ple, we may construct a generator similar to Alamounti’s gener-
ator. After that, we encode the STBC code

QZCS:CA(A13A237AK> (7)

where the symbol A denotes a diagonal block matrix with block
elements A; for 1 < ¢ < K, and C is a Hadamard matrix such
that CHC = nlI,, for an identity matrix I,,. It is clear that one
difference between A and the other STBCs is its high PAPR
because of the use of zero in A. The proposed approach can
reduce its PAPR and provide a coding gain. Simple calculations
give

QFQ = ANAF A A A, AL AL). )

Since the Hadamard matrix is an orthogonal matrix, one may ob-
verse that there are no interferences between any different signal
constellation subsets A; and A, for ¢ # j. This property is avail-
able for the decoding procedure. Evidently, if S#S = ¢1,,, the
code Q is an orthogonal code; otherwise it is a quasi-orthogonal
STBC with interference only in the various signal constellation

subsets. According to (6), the diversity product of Q can hence
be calculated as

_ : _ ONH _ O3
A—Qgr;élgl|det(Q ah*(Q -9
K
= min |det<<3)|i1;[1|det(8¢—8’i)| : )

It shows that the total diversity product depends only on the
multiplication of diversity product of various subsets. Since con-
trolling determinants of various subsets is easier than that of a
high order matrix, the proposed approach is more useful for the
orthogonal or quasi-orthogonal STBC designs. In addition, the
performance of the proposed STBC is controllable.

As an example, we focus on the four transmit antennas case.
The transmit code matrix may be written as

Qp, = CiS4 (10)
where 8y = diag{Q12,Qs4}. It is obvious that
Si'Sq = diag(Q15Q12, Q54 Qs4). (11

To design a quasi-orthogonal STBC, we begin with a sim-
ple combination with Alamounti’s generator [2] as the block-
elements of code matrix Sy, i.€.,

Q~—< S )
ij — e *

where j = ¢ + 1 for any positive integer ¢. According to (11)
with respect to orthogonal designs of STBC [4], It is obvious
that the S, is a full-rate code with diversity two [1]. So, the pro-
posed code also has similar properties. If we replace S, by di-
agonal CIOD or asymmetric CIOD (ACIOD) with full rate and
full diversity [13], [14], where z; = Re{z;} + jIm{z12),}
and (a)y denotes a (mod k), the Q,,, with low PAPR can achieve
the full rate and full diversity, and the coding gain is improved.
However, the proposed codes always have linear decoding com-
plexity, one difference is that the proposed code based on CIOD
diagonal code need to change signals before transmitting and af-
ter decoding. Without a loss of generality, we select the conven-
tional diagonal block matrix in (10) to construct the proposed
code and analyze decoding algorithms.

In the proposed approach, the code matrix Q, in (10) may be
rewritten as

12)

Qp, = CsSs =Cy - diag{Q12, @34}

T1—xy To+x] Tz—x; x4t}
| Tty wo—x] T3+T; T4 T3
T oz -2y zetaxl —zstay —xa— 2}

T1+25 To—x] —Xz—xp —Ta+ T3

(13)

where C4 = C3 ® Co is a 4-order Sylvester Hadamard matrix
with the 2-order Hadamard matrix

11
= (1 )
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where ‘®’ denotes Kronecker production. Assuming x; and T;
denote the transmitted signal and the receiving signal, respec-
tively, we get
H .

QIM Qp4 == dzag{aOa ag, 41, al} (14)

2 n 4
whereap =43 7 |2 a1 =43 ;5 [Ti]%,
Therefore, the diversity product is obtained,

and /l‘\z = T; —51

Ap =min{(ap-a1)}. (15)

IV. DECODING ANALYSIS

According to the orthogonality of pairwise rows of the quasi-
orthogonal code matrix in (13), the decoding algorithms can be
derived from an STBC with complex signal constellations.

Let €, denote the permutations of the symbols from the first
row to the {th row of the transmission matrix. The column posi-
tion of x; in the tth row is represented by &€; (i), and the sign of
x; in the tth row is denoted by sgn, (7). We assume that the chan-
nel coefficients h; ;(t) are constant, i.e., h; ;(t) = h; ;. Based
on the orthogonality of the yielded quasi-orthogonal code ma-
trix, the decision statistics Z; of the transmitted signal z; can be
constructed as [4]

N
z; = Z ZSQ"t(iV{;’;,a(i)

ten(s) j=1

(16)

where 7)(7) is the set of rows of the transmission matrix including
Ti»

x; belongs to the tth row of Qp
x; belongs to the tth row of Qp,

ey r,
Ao ={ 7.
t 3

- _ h; iy Ti belongs to the tth row of Qp
360 7 1 hye,4), @F belongs to the tth row of Qp.

Since the value of Z, only depends on the code symbol x;, given
the received signals, the path coefficients and the structure of the
transmission matrix, minimizing the maximum likelihood (ML)

matric .
ZZ Zwt

t=1 j=1 i=1

is equivalent to minimizing each individual decision metric

| — il + (ii |hjf? — 1) |z 2.

t=1 j=1

a7

Now applying (17) to the 4 x 4 STBC Qp, we obtain the
following decision statistics:

.93’1 = 4:31,01 Z

2

3.11(0,0,0,0) + h;21(0,2,0,2)],

N
2—4:::2p1+2 R 4n(0,0,0,0) + kj,1m(2,0,2,0)],
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N

Ty =dzsps + »_[1]51(0,0,2,2) + h;4n(0,2,2,0)],
j=1
N
g =4dzaps+ »_[h34m(0,0,2,2) + h;30(2,0,0,2)] (18)
j=1
where p, = fjf ZJ p [hjsl? for p € {1,3} and n(a1, az,
as,a4) = Yiy(r)4n] for a; € {0,1,2,3} and 7% = -1,

where n denotes the i.i.d. complex addition white Gaussian
noise (AWGN) of the sth time slot at the jth receive antenna.
Essentially, the decision statistics Z; is only a function of z; for
1 < 7 < 4. Consequently, the maximum likelihood decoding
rule can be separated into four independent decoding rules each
for z;, which amounts for having a simple decoding algorithm
at the receiver based only on linear processing of the transmitted
signal, and hence providing remarkably reduced complexity.

Generally, we substitute a 4 x 4 DFT matrix Cp,, in which en-
tries are composed of the elements in {£1, +7}, for Hadamard
C4 in (13). It is known that matrix Cp,, which is a complex
Hadamard matrix, is a kind of Jacket matrices with orthogonal
rows [15]-[17], and can hence be written as

1 1 1 1
1 -7 -1 T

Coi=1 1 1 1 -1 (19)
1 T -T

-1

Since the two matrices Cp, and C4 have the property C g Cn, =
CH¢,, we get the following decision statistics,

N
F1 =4wipy + ) _[1511(0,0,0,0) + hy2n(0,3,2,1)],
j—l

Ty = Az2p1 +Z B 2n(0,0,0,0) + k;1m(2,1,0,3)],

53 :4133,03 337] 0 2 0 2) +h] 4’!’](0 1 2 3)}

i Mz

N
Ty = Az4ps +Z [k 4n(0,2,0,2) + h;3m(2,3,0,1)]. (20)

It implies that the performance of the two transmission matrices
Cp, and Cy4 are the same as the simulation plotted in Fig. 1.

V. SIMULATION RESULTS

In this section, we show the simulated performance of the pro-
posed quasi-orthogonal STBCs for the radiation-power-limited
communication system with the assumption of Rayleigh flat fad-
ing channels.

We consider four transmitted antennas and one receiving an-
tenna based on the ML decoding algorithm. The noises of the
channel are independent samples of a zero-mean complex Gaus-
sian random variable with a variance of 1/(2SNR) per complex
dimension. Fig. 1 shows the simulations of the performance of
the proposed codes by comparing them to Jafarkhani’s code [5],
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Tarokh’s orthogonal 1/2-rate (or 3/4-rate) code [4], conven-
tional diagonal code Sy in (10) and CIOD diagonal code [13]
for the transmission of 2 bits/s/Hz (or 3 bits/s/Hz).

Simulation results show that the suggested quasi-orthogonal
codes outperform Jafarkhani’s code and the 1/2-rate (or 3/4-
rate) orthogonal codes for a range of SNR. It is obvious that
the performances of our codes have been improved at low SNR.
However, the performance of the proposed codes start to deteri-
orate when the SNR value exceeds 22 dB (or 20 dB) for the 2
bits/s/Hz (or 3 bits/s/Hz) transmission rates. When we construct
the proposed code by using the CIOD diagonal code, it outper-
forms the Jafarkhani’s code at whole SNR.

In fact, compared with the utilized diagonal codes, the pro-
posed codes can increase the coding gain without changing di-
versity gain. The proposed codes have better performances with
low PAPR than its diagonal codes due to coding gain. At high
SNR, the half-rate code outperform the others codes due to an
increase in diversity gain.

Compared with Jafarkhani’s code, from the diversity product
Ap in (15), the proposed codes with full rank increase the cod-
ing gain. They have better performances at low SNR. At high
SNR while selecting the conventional diagonal code as block
matrix, the proposed codes have full rate and full rank with di-
versity two and diversity gain two due to lost transmit diversity.
The transmit diversity of the full rate Jafarkhani’s code, which
makes use of pairs of symbols decoding without sacrificing the
performance, is four with the minimum rank two. From simula-
tion results, the performance of Jafarkhani’s code is very close
to full diversity due to the pairs of symbols decoding. It im-
plies that the performance of the proposed code based on the
conventional diagonal code performs a little worse than that of
Jafarkhani’s code. While selecting the diagonal CIOD code as
block matrix, the diversity gain of the proposed codes is always
equal to four. Furthermore, the proposed code based on the di-
agonal CIOD code outperforms Jafarkhani’s code at whole SNR
due to coding gain. The analysis fits well in with the simulation
results.

VL. CONSTRUCTION-EXPANDING OF STBC

In above sections, we have constructed a STBC through de-
signing a quasi-orthogonal transmission matrix based on a 4 x 4
Sylvester Hadamard transform. This method can dispel the zero
elements of the diagonal block transmitted matrix, and hence re-
duce its peak-to-average power ratio. In this section, we suggest
two approaches to generalize the proposed STBC. Also, in or-
der to improve the transmit diversity, in the following proposals
we should select ACIOD [14] codes as block diagonal matrix
because of the full rate CIOD of size exists if and only if size
equals to 2, 3, or 4.

For one hand, a Sylvester Hadamard is a real Hadamard ma-
trix with each entry being either ‘-+1" or ‘~1’ in mathematics
{15}-[17]. This kind of matrix has the order being a multiple of
2 or 4. Following the four transmission antennas approach, we
first construct the general 4m-order transmission antennas or-
thogonal STBC for any positive integer m > 2. As an example,
taking m = 2, we may have

Qpe = CsSs 2D

12
=
s

SER
)

107 ki . R

e Jafarkhani Code (QPSK)

107 ~—mee Proposed '{QPSK)

DFT X Con-Diagonat (QPSK)
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Fig. 1. Performances of different iransmission matrices using four trans-
mitting antennas and one receiving antenna over Rayleigh flat fading
channel: {a) Transmission rate: 2 bits/s/Hz, (b) transmission rate: 3
bits/s/Hz, and (c) transmission rate: 2 bits/s/Hz for 4-QAM.

where Cg = C4 ® C2 and Sy is an 8-order ACIOD diagonal code.

According to the fast construction (or decomposing) algo-
rithm for the block Jacket matrix construction, for n = niny*
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the high-order matrix C,, can be constructed by using the re-
cursive relationship of identity matrices and lower-order block
Jacket matrices C,,, and C,,, i.e.,

Cn‘ing’& = {Inf ®(H In;nvi ®Cn2 ®Iﬂé_1 )}

i=1

X {(J1 Zns-®Cn, ©T )0 T0p }  (22)

i=1
where 7 denotes identity matrix. The n-order transmission an-
tennas quasi-orthogonal STBC @, can be constructed fast from

. =CnSy, (23)

where S, is n-order ACIOD diagonal code.

For another, we can construct the generalized n-order trans-
mission antennas quasi-orthogonal STBC @, using the lower-
order complex Hadamard matrix with respect to (22). For ex-
ample, taking Cp, of (19) and Cpy, described by

1 1 1 1 1 1
1 -1 7 -7 -7
r o -1 T -7 -7
Co, = 1 = = -1 7 =7} 24)
1 -1 -7 = -1 7
1 7 -7 —7 7 -1

we construct the 24-order complex Hadamard matrix Cp,,, i.e.,
Cp,, = Cp,®Cp,. Thus, the 24-order transmission antennas or-
thogonal STBC @,,,, can be constructed from @,,, = Cp,,S24,
where Syy is selected from ACIOD for n = 24.

For n = niny’, the n-order quasi-orthogonal STBC can
be fast constructed by using well-known the 2-order Alamouti
scheme. This quasi-orthogonal STBC is given by

Qn =Cp,Sn (25)
where Cp,, is a complex Hadamard matrix constructed from (22)
and S, is the same diagonal matrix as in (23).

We note that all of the constructed n-order guasi-orthogonal
transmission matrices have the same property. Since any two
rows of transmission matrix are orthogonal, the interferences
can be removed from different antennas, which simplifies the
decoding algorithm of the yielded STBC. These kinds of codes
have an advantage of being designed fast by employing Kro-
necker production and recursive relationship of identity matrices
and successively lower-order block matrices.

VII. CONCLUSIONS

In conclusion, we have investigated a novel design of STBC
based on Jacket transforms. The present STBCs enjoy the ad-
vantage that it can be constructed efficiently with good perfor-
mance. Using this approach, we derive several proposal codes
to enrich their family. Simulation shows that the performances
of the proposed STBCs outperform Jafarkhani’s code and other
orthogonal codes with rate less than one over a wide range of
SNR.
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