• Title/Summary/Keyword: lyapunov approach

Search Result 279, Processing Time 0.027 seconds

A study on Voltage Stability Analysis by the Lyapunov Direct Method in 2-bus Systems (Lyapunov 직접법에 의한 2모선 개통의 전압안정도 해석)

  • Moon, Young-Hyun;Lee, Tae-Shik;Kim, Baik;Lee, Eung-Hyuk;Park, Neung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.106-108
    • /
    • 1993
  • This paper gives derivations of voltage collapse conditions by using the Lyapunov function, which yields the exactly same results with the sensitivity analysis approach. On the other hand, the voltage collapse phenomenon is interpreted in the physical sense, and causes of the static voltage unstability and the dynamic voltage unstability are analyzed with the use of proposed Lyapunov function. In addition a new method is developed to calculate the power capacity limit of transmission lines with respect to voltage stability. This paper shows that it is able to analyze the voltage collapse with the Lyapunov direct method in the simple 2-bus system and proposes that the method works well by observing the variation of Lyapunov function as the load is increased in the system.

  • PDF

Parametric Approaches to Sliding Mode Design for Linear Multivariable Systems

  • Kim, Kyung-Soo;Park, Young-Jin
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.11-18
    • /
    • 2003
  • The parametric approaches to sliding mode design are newly proposed for the class of multivariable systems. Our approach is based on an explicit formula for representing all the slid-ing modes using the Lyapunov matrices of full order. By manipulating Lyapunov matrices, the sliding modes which satisfy the design criteria such as the quadratic performance optimization and robust stability to parametric uncertainty, etc., can be easily obtained. The proposed ap-proach enables us to adopt a variety of Lyapunov- (or Riccati-) based approaches to the sliding mode design. Applications to the quadratic performance optimization problem, uncertain systems, systems with uncertain state delay, and the pole-clustering problem are discussed.

New Robust $H_{\infty}$ Performance Condition for Uncertain Discrete-Time Systems

  • Zhai, Guisheng;Lin, Hai;Kim, Young-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.322-326
    • /
    • 2003
  • In this paper, we establish a new robust $H_{\infty}$ performance condition for uncertain discrete-time systems with convex polytopic uncertainties. We express the condition as a set of linear matrix inequalities (LMIs), which are used to check stability and $H_{\infty}$ disturbance attenuation level by a parameter-dependent Lyapunov matrix. We show that the new condition provides less conservative result than the existing ones which use single Lyapunov matrix. We also show that the robust $H_{\infty}$ state feedback design problem for such uncertain discrete-time systems can be easily dealt with using the approach. The key point in this paper is to propose a kind of decoupling between the Lyapunov matrix and the system matrices in the parameter-dependent matrix inequality by introducing one new matrix variable.

  • PDF

Derivation of a group of lyapunov functions associated with the system energy

  • Moon, Young-Hyun;Kim, Young-Jin;Ko, Kwang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.518-521
    • /
    • 1994
  • Most of the theorems of nonlinear stability is based on the Lyapunov stability theory. The Lyapunov function method is most well-known and provides precise and rigorous theoretical backgrounds. However, the conventional approach to direct stability analysis has been performed without taking account of damping effects. For accurate stability analysis of nonlinear systems, the damping effects should be considered. This paper presents a new method to derive a group of Lyapunov functions to reflect the damping effects by considering the integral relationships of the system governing equations.

  • PDF

Design of A Controller Using Successive Approximation for Weakly Coupled Bilinear Systems

  • Chang, Jae-Won;Kim, Young-Joong;Kim, Beom-Soo;Lim, Myo-Taeg
    • KIEE International Transaction on Systems and Control
    • /
    • v.12D no.1
    • /
    • pp.33-38
    • /
    • 2002
  • In this paper, the infinite time optimal regulation problem for weakly coupled bilinear systems with quadratic performance criteria is obtained by a sequence of algebraic Lyapunov equations. This is the new approach is based on the successive approximation. In particular, the order reduction is achieved by using suitable state transformation so that the original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper also includes an example to demonstrate the procedures.

  • PDF

Control of Nonlinear Crane Systems with Perturbation using Model Matching Approach (모델매칭 기법을 이용한 시스템 섭동을 갖는 비선형 크레인시스템 제어)

  • Cho, Hyun-Cheol;Lee, Jin-Woo;Lee, Young-Jin;Lee, Kwon-Soon
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.523-530
    • /
    • 2007
  • Crane systems are very important in industrial fields to carry heavy objects such that many investigations about control of the systems are actively conducted for enhancing its control performance. This paper presents an adaptive control approach using the model matching for a complex 3-DOF nonlinear crane system. First, the system model is linearized through feedback linearization method and then PD control is applied in the approximated model. This linear model is considered as nominal to derive corrective control law for a perturbed crane model using Lyapunov theory. This corrective control is primitively aimed to compensate real-time control deviation due to partially known perturbation. We additionally study stability analysis of the crane control system using Lyapunov perturbation theory. Evaluation of our control approach is numerically carried out through computer simulation and its superiority is demonstrated comparing with the classical control.

Robust $L_2-L_{\infty}$ Filter Design for Uncertain Time-Delay Systems via a Parameter-Dependent Lyapunov Function Approach (파라미터에 종속적인 리아푸노프 함수 기법에 의한 불확실 시간지연 시스템을 위한 강인한 $L_2-L_{\infty}$ 필터 설계)

  • Choi, Hyoun-Chul;Jung, Jin-Woo;Shim, Hyung-Bo;Seo, Jin-H.
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.177-178
    • /
    • 2008
  • An LMI-based method for robust $L_2-L_{\infty}$ filter design is proposed for poly topic uncertain time-delay systems. By using the Projection Lemma and a suitable linearizing transformation, a strict LMI condition for $L_2-L_{\infty}$ filter design is obtained, which does not involve any iterations for design-parameter search, any couplings between the Lyapunov and system matrices, nor any system-dependent filter parameterization. Therefore, the proposed condition enables one to easily adopt, with help of efficient numerical solvers, a parameter-dependent Lyapunov function approach for reducing conservatism, and to design both robust and parameter-dependent filters for uncertain and parameter-dependent time-delay systems, respectively.

  • PDF

A New Endpoint Detection Method Based on Chaotic System Features for Digital Isolated Word Recognition System

  • Zang, Xian;Chong, Kil-To
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.37-39
    • /
    • 2009
  • In the research of speech recognition, locating the beginning and end of a speech utterance in a background of noise is of great importance. Since the background noise presenting to record will introduce disturbance while we just want to get the stationary parameters to represent the corresponding speech section, in particular, a major source of error in automatic recognition system of isolated words is the inaccurate detection of beginning and ending boundaries of test and reference templates, thus we must find potent method to remove the unnecessary regions of a speech signal. The conventional methods for speech endpoint detection are based on two simple time-domain measurements - short-time energy, and short-time zero-crossing rate, which couldn't guarantee the precise results if in the low signal-to-noise ratio environments. This paper proposes a novel approach that finds the Lyapunov exponent of time-domain waveform. This proposed method has no use for obtaining the frequency-domain parameters for endpoint detection process, e.g. Mel-Scale Features, which have been introduced in other paper. Comparing with the conventional methods based on short-time energy and short-time zero-crossing rate, the novel approach based on time-domain Lyapunov Exponents(LEs) is low complexity and suitable for Digital Isolated Word Recognition System.

  • PDF

Guidance Laws for Aircraft Automatic Landing (항공기 자동착륙 유도 법칙에 관한 연구)

  • Min, Byoung-Mun;No, Tae-Soo;Song, Ki-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.5
    • /
    • pp.41-47
    • /
    • 2002
  • In this paper, a guidance law applicable to aircraft automatic landing is proposed and its performance is compared with the conventional ILS-type landing approach. The concept of miss distance, which is commonly used in the missile guidance laws, and Lyapunov stability are effectively combined to obtain the landing guidance law. The new landing guidance law is integrated into the existing controller and is applied to the landing approach and flare phases of landing procedure. Numerical simulation results show that the new landing guidance law is a viable alternative to the conventional strategies that directly control the longitudinal deviation or altitude.

Delay-dependent stabilization for time-delay systems;An LMI approach

  • Cho, H.J.;Park, Ju-H.;Lee, S.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1744-1746
    • /
    • 2004
  • This paper focuses on the problem of asymptotic stabilization for time-delay systems. To this end, a memoryless state feedback controller is proposed. Then, based on the Lyapunov method, a delay-dependent stabilization criterion is devised by taking the relationship between the terms in the Leibniz-Newton formula into account. Certain free weighting matrices are used to express this relationship and linear matrix inequalities (LMIs)-based algorithm to design the controller stabilizing the system.

  • PDF