KIEE International Transactions on SC, 12D-1, 33-38 (2002) 33

Design of A Controller Using Successive Approximation for
Weakly Coupled Bilinear Systems

Jae-Won Chang, Young-Joong Kim, Beom-Soo Kim and Myo-Taeg Lim

Abstract - In this paper, the infinite time optimal regulation problem for weakly coupled bilinear systems with quadratic
performance criteria is obtained by a sequence of algebraic Lyapunov equations. This is the new approach is based on the
successive approximation. In particular, the order reduction is achieved by using suitable state transformation so that the
original Lyapunov equations are decomposed into the reduced-order local Lyapunov equations. The proposed algorithms not
only solve optimal control problems in the weakly coupled bilinear system but also reduce the computation time. This paper

also includes an example to demonstrate the procedures.
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1. Introduction

Weakly coupled systems were introduced to the control
audience by [l], and then many researchers have
examined wvarious control aspects for linear weakly
coupled system [2]. In between linear and nonlinear
systems lies a very large class of so called bilinear
systems [3]. In fact, bilinear models can explain a lot of
real physical systems. However, there are few results of
optimal control in the explicit feedback form for general
regulation problem for bilinear systems. Thus, many
researchers have studied numerical methods to find
optimal controls for bilinear systems and recently the
common approach is to solve the state and costate
equations numerically on the basis of a Hamiltonian
formulation of the optimal control problems. Although
there have been a few attempts on the optimal control for
the bilinear system [4],[5], previous studies have not dealt
in the context of weakly coupled bilinear systems. The
main result in {6] indicates that the application of the
linear optimal control theory to the bilinear system with
an iteration step should be carried out with Riccati
equations. An infinite optimal control for the weakly
coupled bilinear system is derived from a sequence of
Riccati equations as illustrated in [8]. In [4], bilinear
systems can be solved a sequence of the time- varying
algebraic Lyapunov equations instead of a sequence of
the time-varying algebraic Riccati equations.

In this paper, we derive a new optimal control
algorithm for infinite-time weakly coupled bilinear
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systems using the successive approximation that is the
approximate procedure is presented in [6]. We can solve
the problem from the algebraic Lyapunov equations,
instead of the algebraic Riccati equations as required in
[6]. As a result, the Riccati equations are replaced by
Lyapunov equations, which simplifies the actual
computations and speeds up the convergence. In addition,
the order-reduction is achieved by the weak coupling
theory, so that original Lyapunov equations are
decomposed into the reduced-order Lyapunov equations.
Therefore, the optimal control problem can be solved with
less computational efforts. This paper deals with the
optimal control for bilinear system in section 2 and
derives main results in section 3. With an example in
section 4, the conclusion is followed in the last section.

2. Optimal Control of Weakly Coupled Bilinear
Systems

The weakly coupled bilinear systems are represented by
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A quadratic cost functional to be minimized is
associated with (1) and it has the following form

—%fm (x7Qc + «"Ru) 3)
with  ©Q=0, R>(Q possessing the weak coupling
structures, that is
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Corresponding Hamiltonian is given by

H(x, u, —g‘l LD = —%(xTQx—i- uTRu)

+ —gﬁ “LAx+(B+ el 5)

This optimization problem has been studied in [8] under
following assumption.

Assumption 1 The pair (A, B) is stabilizable, x stays
in the stabilizability domain X = {xe R”|(A, B+ {xM})
is stabilizable}, and the pair (A,VQ) is detectable.

The dynamic programming approach applied to (1)-(3)
results in a steady-state Hamilton-Jacobi-Bellman equation
of the form [6].

3 TQu+ 7T Ax
— 5 JXB+ GMNR "B+ M) 7T, =0 (6)

Since it is known in [9] for the infinite-time case
J=1J. the solution of the Hamilton-Jacobi-Bellman
P(x)x where the
matrix-valued function P(x) is symmetric [9]. Equation
(6) is now reduced to

equation can be sought in the form J, =

Q+P(x)A+ATP(x)
— P(x)(B+ {xM)R N(B+ {xM}) "P(s) =0 @)

The required optimal control is in the form

u = —RYB+ {xM})) TP(x)x 8)

Unfortunately, there is no analytical solution to
Equation (7). Thus, we need to find an approximate
method to solve the optimal control problem of bilinear
systems.

It was shown in [10] that the solutions of a sequence of

linear differential equation.

P=Ax@+Bu, 20>ty =2 )

x(z):Ax(l)+{x(i'1)(t)M}u (2) + Bu [©)]
Mt =2 i=1,2,-~ (10)

uniformly converge the same control input 2 to the

solution x of (1)-(2). Applying the above result and
Assumption, the optimization problem biliear system (1)-
(2), subject to (3), is replaced by a sequence of
linear-quadratic optimization problems in [8],

x(l)ZAx(i)+ B(Fl)(t)u (2) (11)
where
B P (9=B+ =M

with the algebraic Riccati equation

Q+P ) A (n+ AV (9P
P>y BV (R BV (9PY (D=0 (12)

and
x w(t):(A— B’U_l)(z‘)R‘_1 B(i_l)T(z‘)P(D(i))x(')(t)
x(')(t0)=x0, i=1,2, (13)

The sequence (12)-(13) is initialized by P©(, and
the real symmetric positive definite matrix is acquired by
the following algebraic Riccati equation.

Q+POWA+ATPO(H—POWHBR™'BTPY(H=0 (14)
This solution stabilizes the system

2@ (H=(A-BR 'BTPO()) x (s

x O(ty) =" (15)

After only a few iteration steps P, the solution of
the time-varying algebraic Riccati equation in the iterate
scheme (12)-(13), gets equally close to the optimal
solution P(f) of (7).

3. Weakly Coupled Bilinear Systems Using
Successive Approximation

The method of successive approximations is the main
tool in solving the functional equation of dynamic
programming. It has been used in several control theory
papers [11]. We derive a new algorithms using
successive approximation method. The successive
approximation technique applied to (i)-(4) is composed
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of the following steps

Step 1 Obtain PV(#) from
Riccati equation

the following algebraic

Q+PO(HA+ AP - PO(BR'B'PV(H=0 (16)
along the constraint of dynamical system
V(9= (A~BRTBPO())x?, xV(t)=x" (17)
Therefore, we can obtain the stabilizing linear control law
uQ0(D)=— R 'BTPO(Hx(D

with PP(p being symmetric.

Step 2 Convert the weakly coupled bilinear systems (1)
into the following linear time varying form (18).

(=AW + B Dud (18)
where
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Find the expression for 977/ dx () of the perfor-

mance criterion

O = _%ft“’x(i)r(r)[Qﬁ-P(z)(r)
- B2(or B (9 P01 (Ddr (19)

Step 3 For the known value of 97 ?/dx(#), we derive
Lyapunov Equation.

i _ K P de(py ©
ar? ax(h) dt

=— 2D+ u (DR () (20)

Applying the known (3J(H/ax(H)?, (19) and the
results of [12] are expressed in (22).

JO = —%x(”T(t)P““)(t)x(”)(t) el
We bring out the following Lyapunov equation
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Step 4 Applying the transformation to block diagonalize

matrix A" (#), we will obtain the decoupled Lyapunov
equations. The corresponding nonsingular transformation
is given by

I —eL —1 I-&L.H, ¢L ]
T, = A I o o 2 25
2 eH, I— sZHZLZ] g —eH, I (25)

where matrices L, and H, satisfy the following
algebraic equations

AL -0, A7+ ALy A4 Ly=0 (26)
and

Hz( A«l (i)_EZLZ Eg(l))

_( 2—4(1)#—62 m(l)Lz)H2+ Eg(i)zo (27)

Multiplying the full-order Lyapunov equation (22) from
left by 7,7 and from right by 75!, (22) can be
rewritten as

T T A(i)T(t)P(H—l)(t) T2—1 + Ty TP(i+1)(t)
- AYOT T T @V T =0 (28)

we obtain the following Lyapunov equation

K(Hl)(t)a(a(t)+a(DT(t)K(Hl)(t)+q(z)(t):0
K9 (4) = KO = 75 TpO TS (29)
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where —1.93 0 0 0
» A=| 0394 —0426 0 0
Wep — Depm-1_| Ap (D 0 0 0 —0.63 0
a0 = L ATOT: R VACI 0.095 —0.103 0.413 —0.426
a0 = 1T 0 (Ty! 1.274 1.274 0 0
KO0 = 7o TpGD Tyt - 0 0 = 0 0
P= 123, B=1131 —o0.65" ™7 0.755 0.366)"
0 0 0 0
The following partitioning and scaling are used for 00 0 0
matrices KU*P(#) and ¢?(). =100 = 0 0
Me=M=14 o ™= —o.m8 —0.718)"
00 0 0

K(i+1)(t) =[ Kl(i-H)(t) €K2(i+1)(t)

EKZ(HI)T(t) K3(i+1)(t) (30) é (1) 0013 0%9 1 0
91013 0 01 0| Rz[ '
(1) () y .
q(t)(t):[ ql(l)gt) 54(21)(9 0 009 0 0.2 0 L
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The simulation results are presented in the figure 1-6.
Partitioning (29) according to (30)-(31) reveals
completely decoupled reduced-order equations . - u

KOO0 A0+ A DKV (44 (9=0 :
KO A (D4 A (DKETV (D+ 6 (D=0
ESO() Ag 0+ g DKV +a (=0 (32) ’

Having obtained K“*V(§), i=1,2, -, from (32), we '

can reach the solution of the Lyapunov equation in the o |
original coordinates as T ~—
POty =TIK (DT, i=1,2, - Fig. 1 Trajectories x;

Step 5 Obtained PU*P(p), we get following approxi - d
mated linear control law

u(i+1)(t):__R—l B(H'I)T(t)P(i+l)(t>x(i+l)(t) (33)
and systems are expressed by

P @=1a- B"P )R
(34

B(i+1)T(t)P(i+1)(t)]x(i+1) (9

Step 6 Iterate the Step2-5 until convergence is satisfied.
A

This algorithm provide explicit control laws. Moreover,
we can obtain the control law easily by solving algebraic
Lyapunov equations.

4, The Numerical Example

In order to demonstrate the efficiency of the proposed
algorithm for closed-loop control of weakly coupled :
bilinear systems, we simulate a fourth-order real world Fig. 3 Trajectories of x;3
example, a paper making machine control problem [14].

The bilinear mathematical model of this system is
formulated according to (1) and (3) as




Jae-Won Chang, Young-Joong Kim, Beom-Soo Kim and Myo-Taeg Lim 37

(N S Y S T S JE S S

Fig. 4 Trajectories of X4

‘0 1 i 5 ; [ ] 7 [} ; o

Fig. 5 Trajectories of 2

Olt‘
- —te n P

0 ] 2 3 4 [ ] 7 [} . ¢

Fig. 6 Trajectories of wuy

Fig. 1-4 represent the approximate and the optimal state
trajectories, and the fig. 5-6 represent the optimal
controls. The optimal ones are represented by the solid
lines. It can be seen from the these plots that the
approximate frajectories are very good approximations for
the optimal ones. The number of iterations performed is
7=23, where ; represents the number of linear time
varying systems in the sequence defined by (18). Each
iteration step, FLOPS are expressed as follows:

r P(Riccati) P(Lyap) P(reduced Lyap)
FLOPS 19237 5526 1804

Therefore, the number of computations is reduced. All
numerical results in this paper are obtained by using
MATLAB software and its control tool box.

5. Conclusion

In this paper, the new optimal control algorithm for the
infinite-time weakly coupled bilinear systems using the
successive approximation method is presented. Since the
bilinear system has weakly coupled structure, this method
avoids ill-defined numerical problem and reduces the
number of computations and speeds up the optimization
process by using a sequence of Lyapunov equations.
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