• 제목/요약/키워드: low-temperature sintering Microstructure

검색결과 152건 처리시간 0.023초

$RuO_2$계 후막저항체의 미세구조와 전기적성질 (Microstructure and Electrical Properties of $RuO_2$ System Thick Film Resistors)

  • 구본급;김호기
    • 한국세라믹학회지
    • /
    • 제27권3호
    • /
    • pp.337-344
    • /
    • 1990
  • As a function of sintering temperature and time, the electrical properties of ruthenium based thick film resistors were investigated with microstructure. The variatio of resistivity and TCR(temperature coefficient of resistance)trends of sintered speciman at various sintering temperature were different low resistivity paste(Du Pont 1721) from high one(Du Pont 1741). These phenomena are deeply relative to microstructure of sintered film. With increasing the sintering temperature for 1721 system, the electrical sheet resistivity decreased, but again gradually increased above 80$0^{\circ}C$. And TCR trends in 1721 system are all positive. On the other hand the electrical sheet resistivity of 1741 resistor system decreased with sintering temperature. And TCR trends variable according to sintering temperature. TCR of speciman sintered at $700^{\circ}C$ was negative value, and TCR of 80$0^{\circ}C$ sintered speciman coexisted negative and positive value. But in case of speciman sintered at 90$0^{\circ}C$, TCR was positive value. As results of this fact, it was well known that the charge carrier contributied to electrical conduction in 1741 resistor system varied with sintering temperature.

  • PDF

The Effect of TiO2 Addition on Low-temperature Sintering Behaviors in a SnO2-CoO-CuO System

  • Jae-Sang Lee;Kyung-Sik Oh;Yeong-Kyeun Paek
    • 한국분말재료학회지
    • /
    • 제31권2호
    • /
    • pp.146-151
    • /
    • 2024
  • Pure SnO2 has proven very difficult to densify. This poor densification can be useful for the fabrication of SnO2 with a porous microstructure, which is used in electronic devices such as gas sensors. Most electronic devices based on SnO2 have a porous microstructure, with a porosity of > 40%. In pure SnO2, a high sintering temperature of approximately 1300℃ is required to obtain > 40% porosity. In an attempt to reduce the required sintering temperature, the present study investigated the low-temperature sinterability of a current system. With the addition of TiO2, the compositions of the samples were Sn1-xTixO2-CoO(0.3wt%)-CuO(2wt%) in the range of x ≤ 0.04. Compared to the samples without added TiO2, densification was shown to be improved when the samples were sintered at 950℃. The dominant mass transport mechanism appears to be grain-boundary diffusion during heat treatment at 950℃.

저온소결 PMN-PNN-PZT세라믹스의 소결온도에 따른 미세구조 및 강유전특성 (Microstructure and Ferroelectric Properties of Low Temperature Sintering PMN-PNN-PZT Ceramics with Sintering Temperature)

  • 류주현;이현석;이상호
    • 한국전기전자재료학회논문지
    • /
    • 제19권12호
    • /
    • pp.1118-1122
    • /
    • 2006
  • In this study, in order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured and their microstructure, ferroelectric and piezoelectric properties were investigated. By increasing sintering temperature, remanent polarization$(P_r)$ was increased due to the increase of sinterability and grain size. However, coercive $field(E_c)$ showed an opposite tendency to remanent polarization owing to the feasibility of domain wall motion. At the sintering temperature of $900^{\circ}C$, dielectric $constant({\varepsilon}_r)$, electromechanical coupling $factor(k_p)$, piezoelectric $constant(d_{33})$ and mechanical quality $factor(Q_m)$ showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

제조 공정이 Mn-Zn 페라이트의 미세구조와 전기적 특성에 미치는 영향 (Effects of Ceramic Processing on the Microstructure and Electronic Properties of Low Loss Mn-Zn Ferrite)

  • 박형률;김진호
    • 한국세라믹학회지
    • /
    • 제34권3호
    • /
    • pp.289-295
    • /
    • 1997
  • 저손실 Mn-Zn 페라이트의 제조공정과 첨가제가 코아의 미세구조와 전기적 특성에 미치는 영향을 조사하였다. C\ulcorner와 SiO2를 원료분체혼합시에 첨가하는 경우보다 하소분체의 재분쇄시에 첨가할 때가 작고 균일한 소결체를 얻을 수 있었다. 산소분압(Po2)이 높아짐에 따라 미세구조가 불균일해졌고 DF(disaccomodation fac-색)가 증가하였다. 또한 하소온도가 높고 분쇄시간이 짧은 소결체의 경우 치밀한 속도가 감소하여, 130$0^{\circ}C$까지 정상입성장거동을 보였고, 따라서 높은 소결온도에서도 비교적 저손실 Mn-Zn 페라이트를 얻을 수 있었다. 장시간 분쇄하거나 하소온도가 낮은 시편의 경우는 치밀화속도의 증가에 기인하여 120$0^{\circ}C$이하의 저온 소결시 미립자의 저손실 Mn-Zn 페라이트를 얻을 수 있었으나 소결온도 125$0^{\circ}C$이상에서는 비정상 입성장을 유발시켰다.

  • PDF

Electrical Properties and Dielectric Characteristics CCT-doped Zn/Pr-based Varistors with Sintering Temperature

  • Nahm, Choon-Woo
    • Transactions on Electrical and Electronic Materials
    • /
    • 제10권3호
    • /
    • pp.80-84
    • /
    • 2009
  • The microstructure, voltage-current, capacitance-voltage, and dielectric characteristics of CCT doped Zn/Pr-based varistors were investigated at different sintering temperatures. As the sintering temperature increased, the average grain size increased from 4.3 to 5.1 ${\mu}m$ and the sintered density was saturated at 5.81 g $cm^{-3}$. As the sintering temperature increased, the breakdown field decreased from 7,532 to 5,882 V $cm^{-1}$ and the nonlinear coefficient decreased from 46 to 34. As the sintering temperature increased, the donor density, density of interface states, and barrier height decreased in the range of (9.06-7.24)${\times}10^{17}\;cm^{-3}$, (3.05-2.56)${\times}10^{12}\;cm^{-2}$, and 1.1-0.95 eV, respectively. The dielectric constant exhibited relatively low value in the range of 529.1-610.3, whereas the $tan{\delta}$ exhibited a high value in the range of 0.0910-0.1053.

Fabrication and Characterization of Porous Hydroxyapatite Scaffolds

  • Kim, Min-Sung;Park , Ih-Ho;Lee, Byong-Taek
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.680-685
    • /
    • 2009
  • Using a polyurethane foam replica method, porous hydroxyapatite scaffolds (PHS) were fabricated using conventional and microwave sintering techniques. The microstructure and material properties of the PHS, such as pore size, grain size, relative density and compressive strength, were investigated at different sintering temperatures and holding times to determine the optimal sintering conditions. There were interconnected pores whose sizes ranged between about 300 ${\mu}m$ and 700 ${\mu}m$. At a conventional sintering temperature of 1100$^{\circ}C$, the scaffold had a porous microstructure, which became denser and saw the occurrence of grain growth when the temperature was increased up to 1300$^{\circ}C$. In the case of microwave sintering, even at low sintering temperature and short holding time the microstructure was much denser and had smaller grains. As the holding time of the microwave sintering was increased, higher densification was observed and also the relative density and compressive strength increased. The compressive strength values of PHS were 2.3MPa and 1.8MPa when conventional and microwave sintering was applied at 1300$^{\circ}C$, respectively.

과잉 PbO 첨가 및 미분쇄에 의한 PZT 압전세라믹스의 미세구조제어와 소결특성 및 기계적 성질 (Effects of Excess PbO and Ball-Milling on the Microstructure, Sintering Behavior and Mechanical Properties of PZT Ceramics)

  • 전봉관;남효덕;김상태
    • 한국세라믹학회지
    • /
    • 제32권6호
    • /
    • pp.726-734
    • /
    • 1995
  • Pb(Zr0.53Ti0.47)O3 (PZT) ceramics having different microstructures were fabricated at low temperatures using calcined PZT powders with addition of excess PbO powder and/or ball milling. The effects of excess PbO and ball milling time on the microstructure, the sintering characteristic, and the mechanical properties of these ceramics were studied. Fine powders with average particle size of 0.38㎛ could be obtained by ball milling with 2.5 mm Ф zirconia balls for 120 hours. By the addition of 2mol% of excess PbO to these powders, it was possible to obtain well-densitified PZT ceramics at low sintering temperature of 980℃. Densification behavior of PZT was affected by the addition of excess PbO powder, while, grain growth was hardly affected by PbO addition. It was observed that Vicker's hardness decreased and fracture toughness increased with the increasing amount of PbO. At 1mol% excess PbO, it was shown that the minimum values of hardness and maximum fracture toughness were achieved. In addition, with increasing sintering time, the fracture toughness decreased and the hardness increased.

  • PDF

소결분위기 변환온도가 Al2O3/Cu 나노복합재료의 미세조직과 파괴강도에 미치는 영향 (Effect of Sintering Atmosphere Changing Temperature on Microstructure and Mechanical Property of Al2O3/Cu Nanocomposites)

  • 오승탁;윤세중
    • 한국분말재료학회지
    • /
    • 제11권5호
    • /
    • pp.421-426
    • /
    • 2004
  • The microstructure and mechanical property of hot-pressed $Al_2O_3/Cu$ composites with a different temperature for atmosphere changing from H$_{2}$ to Ar have been studied. When atmosphere-changed from H$_{2}$ to Ar gas at 145$0^{\circ}C$, the hot-pressed composite was characterized by inhomogeneous microstructure and low fracture strength. On the contrary, when atmosphere-changed at low temperature of 110$0^{\circ}C$ the composite showed more homogeneous microstructure, higher fracture strength and smaller deviation in strength. Based on the thermodynamic consideration and microstructural analysis, it was interpreted that the Cu wetting behavior relating to the formation of CuAlO$_{2}$ is probably responsible for strong dependence of microstructure on atmosphere changing temperature. The reason for a strong sensitivity of fracture strength and especially of its deviation to atmosphere changing temperature was explained by the microstructural inhomogeneity and by the role of CuAlO$_{2}$ phase on the interfacial bonding strength.

소결온도에 따른 PMN-PNN-PZT 미세구조 및 압전특성 (Microstructure and Piezoelectric Properties of PMN-PNN-PZT with the Sintering Temperature)

  • 이현석;류주현;윤현상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.217-218
    • /
    • 2006
  • In this study, In order to develop the low temperature sintering multilayer piezoelectric actuator, PMN-PNN-PZT system ceramics were manufactured with the sintering temperature, and their microstructure and piezoelectric properties were investigated. At the composition ceramics sintered at $900^{\circ}C$, dielectric constant(${\varepsilone}_r$), electromechanical coupling factor($k_p$), piezoelectric constant($d_{33}$) and mechanical quality factor(Qm) showed the optimal value of 1095, 0.60, 363 and 1055, respectively, for multilayer piezoelectric actuator application.

  • PDF

적외선 램프를 이용하여 소결한 구리 나노잉크의 전기적 특성 평가에 관한 연구 (Electrical Property Evaluation of Printed Copper Nano-Ink Annealed with Infrared-Lamp Rapid Thermal Process)

  • 한현숙;김창규;양승진;김윤현
    • 한국재료학회지
    • /
    • 제26권4호
    • /
    • pp.216-221
    • /
    • 2016
  • A sintering process for copper based films using a rapid thermal process with infrared lamps is proposed to improve the electrical properties. Compared with films produced by conventional thermal sintering, the microstructure of the copper based films contained fewer internal and interfacial pores and larger grains after the rapid thermal process. This high-density microstructure is due to the high heating rate, which causes the abrupt decomposition of the organic shell at higher temperatures than is the case for the low heating rate; the high heating rate also induces densification of the copper based films. In order to confirm the effect of the rapid thermal process on copper nanoink, copper based films were prepared under varying of conditions such as the sintering temperature, time, and heating rate. As a result, the resistivity of the copper based films showed no significant changes at high temperature ($300^{\circ}C$) according to the sintering conditions. On the other hand, at low temperatures, the resistivity of the copper based films depended on the heating rate of the rapid thermal process.